
Playing with Repetitions in Data Words

Anirban Majumdar

M.Sc. Thesis

Supervisor: M Praveen

Chennai Mathematical Institute

February 20, 2019

Acknowledgements

I would like to thank my supervisor, Prof. M Praveen, for introducing me to
the logic of repeating values and for all the useful discussions that we have
had.

I also wish to thank Prof. B Srivathsan who kindled my interest in the field
of Automata Theory and Verification.

Finally, I would like to thank Prof. Madhavan Mukund, Prof. Aiswarya
Cyriac, Prof. Amaldev Manuel, Prof. Mandayam Srivas and Prof. Narayan
Kumar for the exciting courses in Logic, Automata Theory and Verification
that I took under them.

2

Abstract

We study two-player games which build words over infinite alphabets, and we
study the problem of checking the existence of winning strategies. These
games are played by two players, who take turns in choosing valuations
for variables ranging over an infinite data domain, thus generating multi-
attributed data words. The winner of the game is specified by formulas in the
Logic of Repeating Values, which can reason about repetitions of data values
in infinite data words. It is known that checking whether one of the players
has a winning strategy is undecidable in general and becomes decidable under
some restrictions. Existing works do not address the case where the logic of
repeating values can use nested formulas. We study this scenario and deter-
mine that decidability depends on whether or not nested formulas can refer
to the future.

3

Contents

1 Introduction 5

2 Preliminaries 8

2.1 Logic of repeating values . 8

2.2 Game of repeating values . 10

2.3 2-Counter Machine . 11

2.4 Lossy Counter Machine . 12

2.5 Parity games on integer vectors 13

3 Realizability of LRV With Nested Formulas 16

3.1 Decidability of single-sided LRV[Ψ,≈,←] games 16

3.2 Undecidability of single-sided LRV[≈,←] games 24

4 Conclusion 29

A 32

A.1 Decidability of single-sided LRV[>,←] games 32

A.2 Undecidability of single-sided LRV[>, ≈, →] games 39

4

Chapter 1

Introduction

Model checking is a method for formally verifying finite or infinite state sys-
tems. Given a model of a system, in verification, we encounter the following
problem: we check whether the model satisfies a given specification. For
example, we could check whether a system satisfies safety requirement i.e.
absence of deadlocks etc. For this we need a precise and unambiguous state-
ment of the specification to be examined. To this end, specifications about
the system are often expressed as formulas in temporal logic (LTL) and the
task is then to check whether the formula is satisfiable in the given structure.
This is known as model checking problem.

In some situations, checking satisfiability is not of much help. Suppose we
want to specify two properties of a coffee machine. The first property is that
when a coffee button is pressed, coffee should be produced in the next step.
The second property is that when a stop button is pressed, no coffee should be
produced in the next step. We want to specify the conjunction of these two
conditions. This has a satisfying assignment: neither button is ever pressed
and no coffee is ever produced. But this does not give any intuition of the
conflict of the two conditions. This situation can be tackled if we consider
a two player game between, say environment and system. Suppose the value
of coffee button and stop button be chosen by environment and the value of
coffee produced be chosen by system. Then we would like to find if system
can play in such a way such that it can win (i.e. both the conditions are
satisfied) irrespective how environment plays. This is known as realizability
problem. In this example, we can see that system cannot ensure that (we say,
system does not have any winning strategy). The realizability problem on
traces has been extensively studied for Boolean variables under LTL definable
properties, starting from [12]. In this thesis, we study realizability problem
for specifications in an extension of LTL.

Data words are words over an infinite alphabet (on the contrary to the ones

5

accepted by finite automata or Büchi automata where the alphabet is finite).
Data words appear in many contexts, for example as abstractions of timed
words, runs of counter automata etc. Characterisation of languages of data
words have been studied; both automata structure [11, 13] and logics [2, 5, 8, 6]
have been proposed for such languages. We want to express properties like
whether a data value assigned to a variable at a certain position is repeated
locally (eg, in the previous position) or remotely (e.g., in any position in
future). To this end, Logic of Repeating Values (LRV) has been introduced
[3] which is an extension of linear temporal logic (LTL) with the above tests.

The satisfiability problem for LRV has been studied in [3, 4]. There it has
been proved that this problem is inter-reducible with the reachability problem
for Vector Addition Systems with States (VASS). In [7], the authors introduce
two player games on such structures. In this, some data values are chosen
by system player and some by environment player. The reactive system has
to satisfy a specified property, given as a logical formula over data words.
Now they consider the realizability problem. Recall, the realizability problem
asks whether it is possible that there exists a system that always satisfies the
specified property, irrespective of what the environment does.

In [4, 7], the authors also consider some fragments of LRV. In [7], the
authors show that if we consider the fragment of LRV where no future obli-
gations, inequality constraints and nested formulas are allowed (in notation,
LRV[>, ≈,←], formally defined later), then the above mentioned realizability
problem is undecidable. Then they define single-sided game where environ-
ment has only boolean variables and system has data variables. They also
show that in the above fragment the problem becomes decidable if we con-
sider such single-sided games. They also show that instead of past obligations,
if we allow only future obligations (LRV[>, ≈,→]), then even the single-sided
games are undecidable.

In this thesis, we try to extend some results from[7] for some other frag-
ments of LRV. More specifically, in [7], the authors do not show any result
for the fragment where nested formulas are allowed (i.e. , the logic LRV[≈,
←]). In this thesis, we show that on this fragment, the realizability problem
for single sided games are undecidable. But again, if we restrict the nested
formulas to some special kind, then the problem is reducible to single sided
VASS game.

Thesis Outline: In chapter 2, we present the preliminaries which we will
need throughout the thesis. We define the main logic (LRV), its different
fragments we are interested in. We also present basic definitions of the VASS
games, and counter machines which we shall use for our decidability and
undecidability results. Then we move to proving our main results in this

6

thesis. In chapter 3, as described above, first we show that the realizability
problem on LRV[Ψ,≈,←] (where Ψ is defined in the chapter 3 itself - it is
basically a restriction for nested formulas) is decidable; this result is proved
using the same idea used in section 5 of [7]. And then we move to proving
the undecidability of the realizability problem for LRV[≈,←] in section 2 of
chapter 3, which is also similar to the proof used in section 6 of [7]. One
can read [7] to get a better understanding on the proof techniques; but for
completeness, we briefly explain here the relevant two sections from that paper
and add it in the appendix.

7

Chapter 2

Preliminaries

In this chapter, we first formally define the syntax and semantics of the logic
of repeating values and its fragments [4, 7]. Then we shall define the game of
repeating values which is our main point of interest. Then we shall quickly
mention counter machines and parity games on integer vectors which we will
need for proving the decidability and undecidability results in the following
chapters. Finally, we shall give an outline of the problems we are interested
in and the results from the literature and also some extensions of those which
we shall prove in the next chapters.

Let Z denote the set of integers and N the set of non-negative integers.
For an alphabet Σ, Σ∗ denotes the set of finite words over Σ, Σ+ denotes the
set of non-empty finite words over Σ and by Σω we denote the set of infinite
words over Σ. For a finite word u ∈ Σ∗, |u| denotes the length of u. For any
set S, we denote by P(S) the set of all subsets of S (i.e. the powerset of S)
and by P+(S) the set of all non-empty subsets of S.

2.1 Logic of repeating values

This logic is an extension of the classical propositional linear temporal logic
(LTL) which can also reason about repetitions of data values from an infinite
domain. Let BVARS = {q, p, . . .} be a countably infinite set of boolean
variables taking values from {>,⊥} and DVARS = {x, y, . . .} be a countably
infinite set of data variables taking values from an infinite domain D. The
boolean variables could be simulated by data variables but for convenience we
keep them separate. We denote by LRV the logic whose formulas are defined
as follows:

8

ϕ ::= q | x ≈ Xjy | x ≈ 〈ϕ?〉y | x 6≈ 〈ϕ?〉y | x ≈ 〈ϕ?〉−1y
| x 6≈ 〈ϕ?〉−1y | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | X−1ϕ
| ϕSϕ , where q ∈ BVARS, x, y ∈ DVARS, j ∈ Z

A valuation is the union of a mapping from BVARS to {>,⊥} and a
mapping from DVARS to D. A model is a finite or infinite sequence σ of
valuations and σ(i) denotes the ith valuation in σ, where i ∈ N \ {0}. For
any model σ and position i ∈ N \ {0}, the satisfaction relation |= is defined
inductively as follows.

σ, i |= q : σ(i)(q) = >
σ, i |= x ≈ Xjy iff 1 ≤ i+ j ≤ |σ|, σ(i)(x) = σ(i+ j)(y)

σ, i |= x ≈ 〈ϕ?〉y iff ∃j > i s.t. σ(i)(x) = σ(j)(y), σ, j |= ϕ

σ, i |= x 6≈ 〈ϕ?〉y iff ∃j > i s.t. σ(i)(x) 6= σ(j)(y), σ, j |= ϕ

σ, i |= x ≈ 〈ϕ?〉−1y iff ∃j < i s.t. σ(i)(x) = σ(j)(y), σ, j |= ϕ

σ, i |= x 6≈ 〈ϕ?〉−1y iff ∃j < i s.t. σ(i)(x) 6= σ(j)(y), σ, j |= ϕ

σ, i |= ϕ ∧ ϕ′ iff σ, i |= ϕ and σ, i |= ϕ′

σ, i |= ¬ϕ iff σ, i 6|= ϕ

σ, i |= Xϕ iff σ, i+ 1 |= ϕ

σ, i |= X−1ϕ iff i > 1 and σ, i− 1 |= ϕ

σ, i |= ϕUϕ′ iff ∃i ≤ j such that σ, j |= ϕ′ and for every i ≤ l < j, we have σ, l |= ϕ

σ, i |= ϕSϕ′ iff ∃j ≤ i such that σ, j |= ϕ′ and for every j < l ≤ i, we have σ, l |= ϕ

for q ∈ BVARS, x, y ∈ DVARS and j ∈ Z.

Note that the temporal operators next (X), previous (X−1), until (U) and
since (S) and the boolean connectives are defined in the usual way. We write
σ |= ϕ if σ, 1 |= ϕ.

Intuitively, the formula x ≈ Xjy tests that the data value mapped to the
variable x at the current position repeats in the variable y after j positions. We
use the notation Xix ≈ Xjy as an abbreviation for the formula Xi(x ≈ Xj−iy)
(without loss of generality assume i ≤ j). The formula x ≈ 〈ϕ?〉y tests that
the data value mapped to x at the current position repeats in y at a future
position that satisfies the nested formula ϕ. Similarly the formula x 6≈ 〈ϕ?〉y
tests that the data value mapped to x at the current position is not the same
as the data value of y at a future position that satisfies the nested formula ϕ.
The formulas x ≈ 〈ϕ?〉−1y and x 6≈ 〈ϕ?〉−1y are similar but test for repetitions
of data values in past positions.

9

Symbol Meaning
> ϕ has to be > in x ≈ 〈ϕ?〉y (no nested formulas)
≈ disequality constraints (x 6≈ 〈ϕ?〉y or x 6≈ 〈ϕ?〉−1y) are not allowed
→ past obligations (x ≈ 〈ϕ?〉−1y or x 6≈ 〈ϕ?〉−1y) are not allowed
← future obligations (x ≈ 〈ϕ?〉y or x 6≈ 〈ϕ?〉y) are not allowed

Table 2.1: Restrictions of LRV

Now we shall define some fragments of the logic. We append symbols to
LRV for denoting syntactic restrictions as shown in the Table 2.1. For ex-
ample, LRV[>,≈,→] denotes the fragment of LRV in which nested formulas,
disequality constraints and past obligations are not allowed. For simplicity in
notation, we replace 〈>?〉 with ♦ in formulas. E.g., we write x ≈ 〈>?〉y as
x ≈ ♦y.

2.2 Game of repeating values

The game of repeating values [7] is played between two players, called environ-
ment and system. Informally, the set of variables are partitioned into two sets,
one for each player. The game starts with a move of the environment player.
In the first round, environment chooses a valuation for its variables. In the
next round, system player responds by choosing a valuation for its variables.
In the next round, again environment chooses a valuation and so on. This way
environment and system keeps on playing forever one after another and builds
an infinite model. The winning condition is given by a LRV formula; system
wins if the infinite model satisfies the formula.

The following example illustrates the utility of this game. Consider a sce-
nario in which the system is trying to schedule tasks on processors. The
number of tasks can be unbounded and task identifiers can be data val-
ues. Suppose the variable init carries identifiers of tasks that are initialized
and proc carries identifiers of tasks that are processed. Then the formula
G (proc ≈ ♦−1init) specifies that all tasks that are processed must have been
initialized beforehand. Let the variable log carry identifiers of tasks that
have been processed and are being logged into an audit table. The formula
G (proc ≈ X log) specifies that all processed tasks are logged into the audit
table in the next step. Suppose there is a Boolean variable lf belonging to the
environment that denotes whether the logger is working or not. The formula
G (¬lf ⇒ ¬(log ≈ X−1 proc)) specifies that if lf is false (denoting that the
logger is not working), then the logger can not put the task that was processed
in the previous step into the audit table in this step. The combination of the
last two specifications is not realizable by any system since as soon as the

10

system processes a task, the environment can make the logger non-functional
in the next step. This can be algorithmically determined by the fact that
for the conjunction of the last two formulas, there is no winning strategy for
system in the game of repeating values.

Now let us formally define the game of repeating values. The set BVARS
(resp. DVARS) is partitioned as BVARSe (resp. DVARSe), BVARSs (resp. DVARSs),
owned by environment and system respectively. Let BΥ e (resp. DΥ e, BΥ s,
DΥ s) be the set of all mappings bυe : BVARSe → {>,⊥} (resp., dυe :
DVARSe → D, bυs : BVARSs → {>,⊥}, dυs : DVARSs → D). Given
two mappings υ1 : V1 → D ∪ {>,⊥}, υ2 : V2 → D ∪ {>,⊥} for disjoint
sets of variables V1, V2, we denote by υ = υ1 ⊕ v2 the mapping defined as
υ(x1) = υ1(x1) for all x1 ∈ V1 and υ(x2) = υ2(x2) for all x2 ∈ V2. Let Υe

(resp., Υs) be the set of mappings {bυe ⊕ dυe | bυe ∈ BΥ e, dυe ∈ DΥ e}
(resp. {bυs ⊕ dυs | bυs ∈ BΥ s, dυs ∈ DΥ s}).

The first round of a game of repeating values is begun by environment
choosing a mapping υe1 ∈ Υe, to which system responds by choosing a mapping
υs1 ∈ Υs. Then environment continues with the next round by choosing a
mapping from Υe and so on. The game continues forever and results in an
infinite model σ = (υe1 ⊕ υs1)(υe2 ⊕ υs2) · · · . The winning condition is given by
a LRV formula ϕ — system wins iff σ |= ϕ.

Now let us define strategy of a player. Let Υ be the set of all valua-
tions. For any model σ and i > 0, let σ � i denote the valuation sequence
σ(1) · · ·σ(i), and σ � 0 denote the empty sequence. A strategy for envi-
ronment is a mapping te : Υ∗ → Υe. A strategy for system is a mapping
ts : Υ∗ · Υe → Υs. We say that environment plays according to a strategy te
if the resulting model (υe1 ⊕ υs1)(υe2 ⊕ υs2) · · · is such that υei = te(σ � (i− 1))
for all positions i ∈ N \ {0}. System plays according to a strategy ts if the
resulting model is such that υsi = ts(σ � (i−1)·υei) for all positions i ∈ N\{0}.
A strategy ts for system is winning if system wins all games that she plays
according to ts , irrespective of the strategy used by environment.

We say a game is single-sided if the environment player has only boolean
variables while the system player has data variables. Later we shall show some
decidability and undecidability results on such games of repeating values.

2.3 2-Counter Machine

A 2-counter machine is described by a 6-tuple (Q, δ, qinit, qfin, c1, c2), where
Q is a finite set of states, qinit is the initial state, qfin is the final state, c1, c2
are two counters and δ is a finite set of transitions which are of the form
(q1, a, q2), where q1, q2 ∈ Q and a is one of the following actions: (1) ‘ci −−’,

11

(2) ‘ci + +’, or (3) ‘ci = 0?’ for i ∈ {1, 2}. Intuitively, transitions can either
increase or decrease a counter or test whether the counter value is 0. A
configuration of the 2-counter machine is a triple (q, n1, n2) where q ∈ Q and
n1, n2 ∈ N denote the current counter values. The transition relation −→ on
configurations is defined as follows. We have (q, n1, n2) −→ (q′, n′1, n

′
2) iff one

of the following is true:

(1) (q, ci + +, q′) ∈ δ for i ∈ {1, 2} and n′i = ni + 1, n′3−i = n3−i;

(2) (q, ci −−, q′) ∈ δ for i ∈ {1, 2} and ni > 0, n′i = ni − 1, n′3−i = n3−i;

(3) (q, ci = 0?, q′) ∈ δ for i ∈ {1, 2} and ni = 0, (n′1, n
′
2) = (n1, n2).

A run of a counter machine is a (possibly infinite) sequence of configura-
tions s0, s1, . . . such that s0 −→ s1 −→ s2 We say that a counter machine
is deterministic if for every configuration (q, n1, n2) there exists at most one
configuration (q′, n′1, n

′
2) so that (q, n1, n2) −→ (q′, n′1, n

′
2). Given a 2-counter

machine, the reachability problem is to determine if there exists a se-
quence of transitions of the 2-counter machine starting from the configuration
(qinit , 0, 0) and ending at the configuration (qfin , n1, n2) for some n1, n2 ∈ N.
It is known that the reachability problem for 2-counter machines is unde-
cidable [10]. For our undecidability results we will use the above fact for a
deterministic 2-counter machine. To simplify our undecidability results we
further assume, without any loss of generality, that there exists a transition
t̂ = (qfin , c1 + +, qfin) ∈ δ.

Theorem 1. [10] The reachability problem for 2-counter machine is undecid-
able.

2.4 Lossy Counter Machine

A n-counter machine is defined [9] in almost the same way as above except the
fact that now we have n counters c1, c2, . . . , cn. In this case, a configuration is
a tuple of the form (q,m1,m2, . . . ,mn) where q ∈ Q and m1,m2, . . . ,mn ∈ N
denote the current counter values.

Now let us define a transition relation
s−→ on the configurations of a counter

machine as follows. We have (q,m1,m2, . . . ,mn)
s−→ (q′,m′1,m

′
2, . . . ,m

′
n) iff

one of the following is true:

(1) (q,m1,m2, . . . ,mn) = (q′,m′1,m
′
2, . . . ,m

′
n);

(2) q = q′ and
∑n

i=1mi >
∑n

i=1m
′
i.

12

Intuitively, the relation
s−→ says that either the configuration remains un-

changed or the sum of all the counter values decreases. We say a relation
l−→

is a lossiness relation iff
l−→⊆ s−→.

A lossy counter machine (LCM) is described by a counter machine and

a lossiness relation
l−→. We define the lossy transition relation ⇒ on con-

figurations of a LCM as follows. We have γ1 ⇒ γ2 iff ∃ γ3, γ4 such that

γ1
l−→ γ3 −→ γ4

l−→ γ2. A run, defined as before, is a (possibly infinite) sequence
of configurations s0, s1, . . . such that s0 ⇒ s1 ⇒ s2

For our undecidability result, we shall consider
l−→ to be reset lossiness

defined as follows. Whenever there is a zero test for a counter, that counter can

suddenly become zero. Formally, (q,m1,m2, . . . ,mn)
l−→ (q′,m′1,m

′
2, . . . ,m

′
n)

iff one of the following is true:

(1) (q,m1,m2, . . . ,mn) = (q′,m′1,m
′
2, . . . ,m

′
n);

(2) q = q′,m′i = 0 for some i ,m′j = mj for all j 6= i and ∃ q′′ such that (q, ci =
0?, q′′) ∈ δ.

We define two restrictions of a n-counter machine. We say a counter
machine is input-bounded if from any configuration, the sum of the counter
values of every reachable configuration is bounded by (i.e. less than or equal
to) the sum of the counter values in the initial configuration. We say a counter
machine is strongly-cyclic if in every run from any configuration, the initial
state qinit is visited infinitely often.

Now consider the following problem. Given a strongly-cyclic, input-bounded
LCM M with 5 counters and initial state qinit , the problem is to determine
if there exist initial counter values m1, . . . ,m5 ∈ N and a state q ∈ Q such
that there is an infinite run starting at the configuration (q,m1, . . . ,m5). Let
us call this the existential infinite run problem. This problem is known to be
undecidable. We use this result for proving our undecidability result in a later
chapter.

Theorem 2. [9] The existential infinite run problem for a strongly-cyclic,
input-bounded LCM is undecidable.

2.5 Parity games on integer vectors

We define the parity games on Vector Addition Systems with States (VASS)
[1]. The game is played between two players, environment and system. A
VASS game is a tuple (Q = Qe]Qs, C, T, π) where Q is a finite set of states,

13

Qe are states belonging to environment player and Qs are states belonging to
system player, C is a finite set of counters, T is a finite set of transitions and
π : Q→ N\{0} is a colouring function that assigns a natural number to each
state. A transition in T is of the form (q, op, q′) where q, q′ ∈ Q are called the
source and target states respectively and op is an operation of the form x++
(increment a counter), x − − (decrement a counter) or nop (counter values
remain unchanged), where x ∈ C is a counter. We say that a transition of a
VASS game belongs to a player if its source state belongs to that player. We
call a VASS game single-sided if every environment transition is of the form
(q, nop, q′). We also assume that there is no dead-lock, i.e. from every state,
we have at least one outgoing transition.

A configuration of the VASS game is a tuple (q, ~n) where q ∈ Q is a state
and ~n ∈ NC is a valuation for the counters. A play of the VASS game begins
at a designated initial configuration. The owner of the state of the current
configuration (say (q, ~n)) plays one of the outgoing transitions (say (q, op, q′))
and changes the configuration to (q′, ~n′), where ~n′ is obtained from ~n iff one
of the following is true:

(1) op is x+ +; ~n′(x) = ~n(x) + 1 and ~n′(y) = ~n(y);

(2) op is x−−; ~n′(x) = ~n(x)− 1 and ~n′(y) = ~n(y);

(3) op is nop; ~n′ = ~n.

where y is any counter distinct from x. We denote this update as (q, ~n)
(q,op,q′)−−−−→

(q′, ~n′). The play is then continued similarly by the owner of the state of the
next configuration. The counter values should be non-negative throughout
the play. From any configuration, a transition that wants to decrement a
counter is enabled only when that counter has a positive value before the
transition. We say a VASS game single-sided if environment cannot change
the value of the counters.

The game continues forever and results in an infinite sequence of config-
urations (q0, ~n0)(q1, ~n1) · · · . The play is winning for System if the maximum
colour occurring infinitely often in π(q0)π(q1)π(q2) · · · is even. Without loss
of generality we can assume that from any configuration, at least one transi-
tion is enabled (otherwise, we can add extra states and transitions to create
a loop ensuring that the owner of the deadlocked configuration loses). For

our purpose, we shall use a generalized form of transitions q
~u−→ q′ where

~u ∈ ZC , to indicate that each counter c should be updated by adding ~u(c).
Such VASS games can be effectively translated into ones of the form defined
above preserving winning regions.

A strategy se for environment in a VASS game is a mapping se : (Q ×
NC)∗ · (Qe×NC)→ T such that for any γ ∈ (Q×NC)∗, qe ∈ Qe and ~n ∈ NC ,

14

se(γ · (qe, ~n)) is a transition that is enabled whose source state is qe. Similarly
we define strategy ss for system player (ss : (Q×NC)∗ · (Qs×NC)→ T). We
say that environment plays according to a strategy se if the resulting sequence
of configurations (q0, ~n0)(q1, ~n1) · · · is such that for all i ∈ N, qi ∈ Qe implies

(qi, ~ni)
se((q0,~n0)(q1,~n1)···(qi,~ni))−−−−−−−−−−−−−−→ (qi+1, ~ni+1). The notion is defined similarly for

the to system player. We say a strategy ss for system is winning if system wins
all the plays that it plays according to ss , irrespective of the strategy used by
environment.

Given a single-sided VASS game and an initial configuration, it is decidable
to check whether system has a winning strategy from that configuration in the
game [1]. We shall use this decidability result in our proofs.

Theorem 3. [1] The existential winning strategy problem for a single-sided
VASS game is decidable.

15

Chapter 3

Realizability of LRV With
Nested Formulas

In [7, Section 5] (See A.1), authors prove that single-sided LRV[>,≈,←]
games are decidable. Now we want to examine whether this result remains
true if we also allow nested formulas in the logic. It turns out that it becomes
undecidable. But if the nested formulas are only of some special form, then
it remains decidable. In this chapter, we prove these two results.

Consider the following syntax which is a restriction of the main logic:

ψ ::= q | x ≈ Xjy | x ≈ 〈ψ?〉−1y | ψ ∧ ψ | ¬ψ,
where q ∈ BVARS, x, y ∈ DVARS, j ≤ 0.

Let us denote by Ψ the set of all the formulas that can be generated from
this grammar. Let us denote by LRV[Ψ,≈,←] the restriction of the main
logic where the nested formulas are from the set Ψ i.e. for any formula of the
form x ≈ 〈ψ?〉−1y, we have ψ ∈ Ψ .

3.1 Decidability of single-sided LRV[Ψ,≈,←]

games

The proof is similar to the proof we saw for single-sided LRV[>,≈,←] games
in section A.1. Here also we build symbolic model using frames, but the
constraints of a frame and the properties are bit different in this case.

Suppose we are given a formula ϕ. Let Φ be the set {ψ | ∃ x, y ∈
DVARSϕ s.t. x ≈ 〈ψ?〉−1y is a sub-formula in ϕ} to keep track of all the vari-
ables taking same data value in different positions. We also add > to the set
Φ. Let Φ̂ := Φ∪{>}. Let ΦAT denotes the set of atomic constraints from the

16

closure (under sub-formulas) of Φ. Note that the closure of a set of formulas
is the union of the closure of the formulas. And the closure of a formula ϕ
(denoted by cl(ϕ)) is defined in the usual way:

cl(ϕ) is the smallest set satisfying the following properties:

- ϕ ∈ cl(ϕ)

- x ≈ 〈ϕ1?〉−1y ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ).

- ϕ1 ∧ ϕ2 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).

- ¬ϕ1 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ).

For example, take ϕ := x ≈ 〈(ψ1∧ψ2)?〉−1y where ψ1 = x1 ≈ 〈ψ3?〉−1y1; ψ2 =
x2 ≈ X−2y2; ψ3 = x3 ≈ ♦−1y3.

Φ = {ψ1 ∧ ψ2, ψ3,>}
Φ̂ = {ψ1 ∧ ψ2, ψ3,>}
ΦAT = {ψ1, ψ2, ψ3,>}
Now we define a Repetition Pattern corresponding to a variable x (we shall

denote it by Ix) to be a subset of P(DVARSϕ)× P(ΦAT). We denote by RP
the set of all such subsets; i.e. RP = P(P(DVARSϕ)× P(ΦAT)).

The intuition is that a Repetition Pattern Ix stores past positions where
the data value of x at the current position has appeared and the formulas
satisfied in those positions. This is explained later in a formal way.

Given a formula in LRV[Ψ, ≈, ←], we first replace all the sub-formulas of
the form x ≈ X−jy with X−j(y ≈ Xjx) if j > 0 for simplicity. For a formula
ϕ obtained after such replacements, let l be the maximum i such that a term
of the form Xix appears in ϕ. We call l the ‘X-length’ of ϕ. Let BVARSϕ and
DVARSϕ denote the set of boolean and data variables respectively used in ϕ.
Let Ωϕ

l be the set of constraints of the form Xiq, Xix ≈ Xjy or Xi(x ≈ 〈ψ?〉−1y),

where q ∈ BVARSϕ, x, y ∈ DVARSϕ and i, j ∈ {0, . . . , l} and ψ ∈ Φ̂.

For e ∈ {0, . . . , l}, an (e, ϕ)-frame is a (e+2)-tuple such that the first
component is a set of constraints fr ⊆ Ωϕ

l , and each of the other (e + 1)
components is a function from DVARSϕ to RP . In notation, fr ∈ P(Ωϕ

l) ×
(RPDVARSϕ

)(e+1). If a formula Xiq ∈ fr [1], then we say that q is true at level
i of fr . Now define the set

Gfri := {ϕ′ ∈ {B(ΦAT) ∪ >} ∩ Φ̂ | {Xi(ϕ′′) ∈ fr [1], for any ϕ′′} |=B ϕ′}

where B(S) denotes the set of all possible boolean combinations of the for-
mulas in S and |=B stands for boolean satisfaction. Intuitively this is the set
of nested formulas which are true at level i in fr .

17

Past obligations and equivalence classes are defined in the same way as
before. Given a formula ϕ in LRV[Ψ,≈,←] of X-length l, for e ∈ {0, . . . , l},
an (e, ϕ)-frame fr , i ∈ {0, . . . , e} and a variable x, the equivalence class of x
at level i in fr is [(x, i)]fr = {y ∈ DVARSϕ | Xix ≈ Xiy ∈ fr [1]}. The set
of past obligations of the variable x at level i in fr is the set POfr(x, i) =

{(y, ψ) ∈ DVARSϕ × Φ̂ | Xi(x ≈ 〈ψ?〉−1y) ∈ fr [1]}.
We say that a set of past obligations POfr(w, i) = Ow (say) is matched to

a Repetition Pattern Iw ∈ RP if there exists a mapping g : O → I such that:

• ∀(x, ψ) ∈ Ow, x ∈ g((x, ψ))[1]

• ∀(x, ψ) ∈ Ow, g((x, ψ))[2] |=B ψ, and

•
⋃
x:(x,ψ)∈Ow

{x} =
⋃
J∈Iw J [1].

Intuitively, the first condition says that the data value of w at the current po-
sition repeats in past at x. The second condition says that the corresponding
past position should satisfy ψ. The last condition here says that the set of
variables in O should be the same as the set of variables occurring in the first
components of I.

The frames should satisfy certain conditions. These are similar to those
in A.1 with some modifications and some extra conditions. The conditions
an (e, ϕ)-frame fr should satisfy are the following:

(F0) For all constraints Xiq,Xix ≈ Xjy,Xi(x ≈ 〈ψ?〉−1y) ∈ fr [1], i, j ∈
{0, . . . , e}.

(F1) For all i ∈ {0, . . . , e} and x ∈ DVARSϕ, Xix ≈ Xix ∈ fr [1].

(F2) For all i, j ∈ {0, . . . , e} and x, y ∈ DVARSϕ, Xix ≈ Xjy ∈ fr [1] iff
Xjy ≈ Xix ∈ fr [1].

(F3) For all i, j, j′ ∈ {0, . . . , e} and x, y, z ∈ DVARSϕ, if {Xix ≈ Xjy,Xjy ≈
Xj
′
z} ⊆ fr [1], then Xix ≈ Xj

′
z ∈ fr [1].

(F4) For all i, j ∈ {0, . . . , e} and x, y ∈ DVARSϕ such that Xix ≈ Xjy ∈ fr [1]:

• if i = j, then for every z ∈ DVARSϕ and every ψ ∈ Φ̂, we have
Xi(x ≈ 〈ψ?〉−1z) ∈ fr [1] iff Xj(y ≈ 〈ψ?〉−1z) ∈ fr [1].

• if i < j, then Xj(y ≈ 〈ψ?〉−1x) ∈ fr [1] ∀ψ ∈ Gfr
i and for every

z ∈ DVARSϕ and every ψ̂ ∈ Φ̂, Xj(y ≈ 〈ψ̂?〉−1z) ∈ fr [1] iff either
Xi(x ≈ 〈ψ̂?〉−1z) ∈ fr [1] or there exists i ≤ j′ < j with Xjy ≈
Xj
′
z ∈ fr [1] and ψ̂ ∈ Gfr

j′ .

18

(F5) For all i, j ∈ {0, . . . , e} and x, y ∈ DVARSϕ such that Xix ≈ Xjy ∈ fr [1],
let Ix := fr [i+ 2](x) and Iy := fr [j + 2](y), then:

• if i = j, then Ix = Iy.

• if i < j, and there is no j′ such that i < j′ < j satisfying Xix ≈
Xj
′
z ∈ fr [1] for any z, then Iy = Ix ∪ {([(x, i)]fr , {ψ | Xi(ψ) ∈

fr [1] and ψ ∈ ΦAT })}.

(F6) For all i, and for all x ∈ DVARSϕ, POfr(x, i) should be matched with
fr [i+ 2](x), where the notion of matching is defined below.

For example, suppose at some level i of a frame the set of past obligations,
POfr(w, i) = {(x, ϕ1), (y, ϕ2 ∧ ϕ3), (z,>)} for some ϕ1, ϕ2 ∧ ϕ3,> ∈ Φ̂. Then
this can be matched with a Repetition Pattern Ix = {({x}, {ϕ1}), ({y}, {ϕ2, ϕ3}), ({z}, {>})}
where ϕ1, ϕ2, ϕ3,> ∈ ΦAT .

Similar to the previous chapter, we define one-step consistency between
two frames. The conditions are almost the same with some modifications and
some extra conditions. A pair of (l, ϕ)-frames (fr , fr ′) is said to be one-step
consistent iff the following conditions are satisfied

(O1) For all Xix ≈ Xjy ∈ Ωϕ
l with i, j > 0, we have Xix ≈ Xjy ∈ fr [1] iff

Xi−1x ≈ Xj−1y ∈ fr ′[1],

(O2) For all Xi(x ≈ 〈ψ?〉−1y) ∈ Ωϕ
l with i > 0, we have Xi(x ≈ 〈ψ?〉−1y) ∈

fr [1] iff Xi−1(x ≈ 〈ψ?〉−1y) ∈ fr ′[1],

(O3) For all Xiq ∈ Ωϕ
l with i > 0, we have Xiq ∈ fr [1] iff Xi−1q ∈ fr ′[1],

(O4) For all i > 0, fr [i+ 2] = fr ′[i+ 1].

Similarly, for e ∈ {0, . . . , l− 1}, an (e, ϕ) frame fr and an (e+ 1, ϕ) frame
fr ′, the pair (fr , fr ′) is said to be one step consistent iff fr ⊆ fr ′ and for
every constraint in fr ′ of the form Xix ≈ Xjy, Xiq or Xi(x ≈ 〈ψ?〉−1y) with
i, j ∈ {0, . . . , e}, the same constraint also belongs to fr .

The symbolic models and the symbolic satisfaction relation are defined
in the same way as in the previous chapter except in this case the definition
will only depend on the first components of the frames. An (infinite) (l, ϕ)-
symbolic model ρ is an infinite sequence of (l, ϕ)-frames such that for all
i ∈ N\{0}, the pair (ρ(i), ρ(i+1)) is one-step consistent. We say ρ, i |=symb ϕ

′

where ϕ′ is a sub-formula of ϕ if (ρ, i)[1] |=symb ϕ
′ and the later is defined in

the same way as in section A.1. We say that a concrete model σ realizes a
symbolic model ρ if for every i ∈ N \ {0}, ρ(i)[1] = {ϕ′ ∈ Ωϕ

l | σ, i |= ϕ′}.In
this case also we can prove the same result as Lemma 11:

19

Lemma 4 (symbolic vs. concrete models). Suppose ϕ is a LRV[Ψ,≈,←]
formula of X-length l, ρ is a (l, ϕ)-symbolic model and σ is a concrete model
realizing ρ. Then ρ symbolically satisfies ϕ iff σ satisfies ϕ.

We define forward reference and backward reference in the same way. For
e ∈ {0, . . . , l}, an (e, ϕ)-frame fr , i ∈ {0, . . . , e} and a variable x, we say
that there is a forward reference (resp. backward reference) from (x, i) in fr
if Xix ≈ Xi+jy ∈ fr [1] (resp. Xix ≈ Xi−jy ∈ fr [1]) for some j > 0 and
y ∈ DVARSϕ.

Now we define points of increment and decrement of Repetition Patterns
as follows: for e ∈ {0, . . . , l}, and a variable x,

• For an (l, ϕ)-frame fr , if there is no forward reference from (x, 0), then
[(x, 0)]fr is a point of increment for the Repetition Pattern Ix∪{([(x, 0)]fr , fr [2])}
and the Repetition Pattern is incremented once for each equivalence class
[(x, 0)]fr .

• For an (e, ϕ)-frame fr , if there is no backward reference from (x, e),
then [(x, e)]fr is a point of decrement for the Repetition Pattern Ix and
the Repetition Pattern is decremented once for each equivalence class
[(x, e)]fr .

We denote by inc(fr) the vector indexed by non-empty elements of RP,
where each coordinate contains the number of points of increment in fr for
the corresponding Repetition Pattern. Similarly, we have the vector dec(fr)
for points of decrement.

Given a LRV[Ψ, ≈, ←] formula ϕ in which DVARSe = ∅ = BVARSs, we
construct a single-sided VASS game as follows. The construction is almost
the same as in the construction in Section A.1.

Let the X-length of ϕ is l, FR be the set of all (e, ϕ)-frames for all e ∈
{0, . . . , l}, Aϕ be the deterministic parity automaton whose language is the
set of all symbolic models which symbolically satisfies ϕ with initial state
qϕinit . Environment states: {−1, 0, . . . , l}×Qϕ× (FR∪{⊥}) and system states:
{−1, 0, . . . , l} × Qϕ × (FR ∪ {⊥}) × P(BVARSϕ). Transitions of the VASS
game are defined as follows:

• (e, q, fr)
~0−→ (e, q, fr , V) for every e ∈ {−1, 0, . . . , l}, q ∈ Qϕ, fr ∈ FR ∪

{⊥} and V ⊆ BVARSϕ.

• (e, qϕinit , fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (e+1, qϕinit , fr

′) for every V ⊆ BVARSϕ, e ∈
{−1, 0, . . . , l−2}, (e, ϕ)-frame fr and (e+1, ϕ)-frame fr ′, where the pair
(fr , fr ′) is one-step consistent and {p ∈ BVARSϕ | Xe+1p ∈ fr ′[1]} = V .

20

• (e, q, fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (de+1el, q′, fr ′), for every e ∈ {l−1, l}, (e, ϕ)-

frame fr , V ⊆ BVARSϕ, q, q′ ∈ Qϕ and (de+1el, ϕ)-frame fr ′, where the
pair (fr , fr ′) is one-step consistent, {p ∈ BVARSϕ | Xde+1elp ∈ fr ′[1]} =

V and q
fr ′−→ q′ is a transition in Aϕ.

We will have a counter for each non-empty Repetition Pattern. We can prove
the equivalence of the winning strategies in the same manner.

Theorem 5 (repeating values to VASS). Let ϕ be a LRV[Ψ, ≈, ←] formula
with DVARSe = BVARSs = ∅. Then system has a winning strategy in the
corresponding single-sided LRV[Ψ, ≈, ←] game iff she has a winning strategy
in the single-sided VASS game constructed above.

Proof. Result follows from the following two lemmas.

Lemma 6. If system has a winning strategy in the single-sided LRV[Ψ, ≈,
←] then it has a winning strategy in the single-sided VASS game constructed
above.

Proof. We shall define a map µ : (P(BVARSϕ))∗ → FR ∪ {⊥}. For every
sequence χ ∈ (P(BVARSϕ))∗, we will define µ(χ) and a concrete model of
length |χ|, by induction on |χ|.

When |χ| = 0, the concrete model is the empty sequence and the frame is
⊥.

Now suppose, χ = χ′ · V and σ is the concrete model defined for χ′. Let
υe : BVARSe → {>,⊥} be such that υe(p) = > iff p ∈ V . The system
player’s winning strategy ts in the single-sided LRV[Ψ, ≈, ←] game will give
a valuation ts(σ · υe) = υs : DVARSs → D. Then the finite concrete model
corresponding to χ to be σ · (υe ⊕ υs) and µ(χ) to be the frame fr ′ such
that fr ′[1] = {ϕ′ ∈ Ωϕ

l | σ · (υe ⊕ υs), |σ| + 1 − d|σ|el |= ϕ′}. Suppose
fr ′ is an (e, ϕ) frame; then for each i ∈ {0, . . . , e − 1} and x ∈ DVARSϕ,
fr ′[i+2](x) can be achieved by the previous frame due to one-step consistency
and fr ′[e+2](x) is defined to be a Repetition Pattern that contains all the tuples
(X, Y) ∈ P(DVARSϕ)× P(ΦAT) satisfying the following conditions:

• There should be one such tuple corresponding to each position in the
past that repeats the data value of x at the current position.

• For each such past position, the first component will contain the equiva-
lence class of variables taking the data value. And the second component
will contain all the formulas from ΦAT that are true at that position.

21

Note that, since the atomic constraints captured in the frame only depend
on the past, hence the frame can easily be constructed just looking at the
concrete model built so far. If we consider the LRV with any nested formula,
at this step we could not have built the frame just looking at the past since
the nested formula could also depend on the future positions.

Let us denote by ρ the symbolic model fr l+1fr l+2 · · · . Same way as in
Lemma 13, we can conclude ρ |=symb ϕ and hence the system player’s strategy
in the VASS game satisfies the parity winning condition.

Now we will show that the counter (recall that counters are Repetition
Patterns in this case) value remains non-negative always. Initially all counters
are 0. In the first l + 1 frames, any counter cannot decrement since it would
have a backward reference. Now it is enough to show that we can assign a
unique point of increment to each point of decrement for every counter in any
frame fr i for i > l + 1.

Suppose, for some x ∈ DVARSϕ, [(x, l)]fr i
is a point of decrement for Ix.

Choose the last position before i such that σ(i′)(x′) = σ(i)(x) and associate
with [(x, l)]fr i

the class [(x′, 0)]fr i′+l
. Now have to show that this is unique.

Suppose for contradiction, it is also associated with [(y, l)]frj
. Then σ(j)(y) =

σ(i)(x). If i = j, then [(y, l)]frj
= [(x, l)]fr i

. Now suppose j < i. then
j ∈ {1, . . . , i − l − 1} (otherwise it would have a backward reference which
contradicts the fact that Ix has a point of decrement); now if we compute j′

for [(y, l)]frj
like we computed i′ for [(x, l)]fr i

, then we get j′ < i′ (since j ≤ i′).
Similarly if we assume j > i, then i ∈ {1, . . . , i− j−1}, hence i ≤ j′ implying
i′ < j′; hence [(x′, 0)]frj′+l

we associate with [(y, l)]frj
would be different from

[(x′, 0)]fr i′+l
.

Lemma 7. If system has a winning strategy in the single-sided VASS game
constructed above, then it has a winning strategy in the single-sided LRV[Ψ,
≈, ←].

Proof. From system player’s strategy ss in VASS game, we construct its win-
ning strategy in the LRV game. For every σ ∈ Υ∗ and every υe ∈ Υe,
we will define ts(σ · υe) : DVARSϕ → D and a sequence of configurations
χ · ((e, q, fr), ~ninc − ~ndec) in (Q × NC)∗ · (Qe × NC) of length 2|σ| + 3 such
that for every counter Ix ∈ RP , ~ninc(Ix) (resp. ~ndec(Ix)) is the sum of the
number of points of increment (resp., points of decrement) for Ix in all the
frames occurring in χ. By frames occurring in χ, we refer to frames fr such
that there are consecutive configurations ((e, q, fr), ~n)((e, q, fr , V), ~n) in χ. By
ΠFR(χ)(i), we refer to ith such occurrence of a frame in χ. We induct on |σ|.
Let {d0, d1, . . .} ⊆ D be a countably infinite set of data values.

When |σ| = 0, let V be defined s.t. p ∈ V iff υe(p) = >. Let (−1, qϕinit ,⊥, V)
~0−dec(fr1)−−−−−−→

(0, q, fr 1) be the transition chosen by ss . Since it is winning, hence dec(fr 1) is

22

0. We define some unused data value to each equivalence class in fr 1. And de-
fine the sequence of configurations to be ((−1, qϕinit ,⊥),~0)·((−1, qϕinit ,⊥, V),~0)·
((0, q, fr 1),−dec(fr 1)).

For the induction step, suppose σ·υe = σ′·(υe1⊕υs1)·υe and χ′·((e, q, fr), ~n) is
the sequence of configurations given by the induction hypothesis for σ′ ·υe1. We
have {ϕ′ ∈ Ωϕ

l | σ′ ·(υe1⊕υs1), |σ′|+1−e |= ϕ′} = fr [1] and fr [e+2](x) contains
all the tuples (X, Y) ∈ P(DVARSϕ) × P(ΦAT) satisfying the condition that
there exists j ≤ |σ|, such that for all y ∈ X, (σ · (υe ⊕ υs))(|σ| + 1)(x) =
σ(j)(y) and for all ψ ∈ Y , σ, j |= ψ.(otherwise, it would mean that the system
player has already deviated from the strategy defined so far; in that case we
choose arbitrarily). Note that the other coordinates of fr are fixed due to
one-step consistency of frames. Let V be defined s.t. p ∈ V iff υe(p) = >.

Let (e, q, fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (de + 1el, q′, fr ′) be the transition chosen by ss .

We define the sequence of configurations as χ′ · ((e, q, fr), ~n) · ((e, q, fr , V)~n) ·
((de+ 1el, q′, fr ′), ~n+ inc(fr)−dec(fr ′)). Since ss is winning for system, hence
~n + inc(fr) − dec(fr ′) ≥ 0. To define ts(σ · υe), to each equivalence class
[(x, de+ 1el)]fr ′ , assign the data value d′ as defined below:

1. If x has a backward reference at level l in fr ′, then choose the data value
to be the data value at that position.

2. If there is no backward reference and no past obligations also, then
assign a new data value.

3. Otherwise, it is a point of decrement for some Ix. Match it with a
point of increment in a frame that has not been paired off before (it is
possible because (~n+ inc(fr))(Ix) ≥ dec(fr ′)(Ix))). Suppose we pair off
Ix at level (e + 1) in fr ′ with a point of increment [(x, 0)] in the frame
fr i = ΠFR(χ′ · ((e, q, fr), ~n) · ((e, q, fr , V), ~n))(i). Then we define d′ to be
σ′ · (υe1 ⊕ υs1)(i)(x).

Suppose ss results in the model σ = (υe1 ⊕ υs1) · (υe2 ⊕ υs2) · · · . It is clear
from the construction that there is a sequence of configurations

((−1, qϕinit ,⊥),~0)((−1, qϕinit ,⊥, V1),~0)

((0, qϕinit , fr 1), ~n1)((0, q
ϕ
init , fr 1, V2), ~n1)

((1, qϕinit , fr 2), ~n2) · · · ((l, q, fr l+1), ~nl+1)

((l, q, fr l+1, Vl+2), ~nl+1)((l, q
′, fr l+2), ~nl+2) · · ·

in the single-sided VASS game such that the concrete model σ realizes the
symbolic model fr l+1fr l+2 · · · . Since ss is winning for the system player, the
sequence of configurations above satisfy the parity condition of the single-
sided VASS game, so fr l+1fr l+2 · · · symbolically satisfies ϕ. From Lemma 4,
we conclude that σ satisfies ϕ.

23

This concludes the proof of Theorem 5.

3.2 Undecidability of single-sided LRV[≈,←]

games

In the previous section, we have shown that if the nested formulas are of some
restricted kind, particularly generated by the syntax defined in the beginning
of this chapter, then the existence of winning strategy for single-sided LRV
games with past and equality constraints is reducible to single-sided VASS
game. But in general, if we allow any form of nested formula in the LRV
game with past, then even the single-sided games become undecidable.

Theorem 8. The existence of winning strategy for single-sided LRV[≈,←
] games is undecidable, even when environment has 1 Boolean variable and
system has 5 data variables (and some boolean variables).

Proof. We prove this result by showing a reduction from the undecidability
problem for a lossy counter machine defined in Theorem 2. System makes
use of labels to encode the sequence of transitions of a witnessing run of the
LCM. The undecidability result is true even when system has 5 data variables
x1, . . . , x5 (in addition to a number of Boolean variables which encode the
labels); and environment has just one Boolean variable b.

Let’s name the counters of the LCM c1, . . . , c5. The variables x1, . . . , x5
are used to encode the counters c1, . . . , c5 respectively, and the variable b is
used to ensure that there are no ‘illegal’ transitions — namely, no decrements
of a zero-valued counter.

Given a LCM M with 5 counters, we first include 5 extra states to the
model. Suppose Q was the set of states with initial state qinit and set of
transitions δ. Then construct a new LCM M ′ with set of states Q′ = Q]{pi |
i = 1, . . . , 5} (without loss of generality assume that none of the pi’s appears
in Q). M ′ will have initial state p1 and the transition relation δ′ will include
transitions from δ, in addition we will have the following transitions:

• (pi, ci + +, pi) ∈ δ′ for i ∈ {1, . . . , 5}

• (pi, ε, pi+1) ∈ δ′ for i ∈ {1, . . . , 4}

• (p5, ε, q) ∈ δ′ for all q ∈ Q

These additional transitions will help the system player to choose an appro-
priate initial configuration of the LCM. We will discuss this in more details

24

later when we will prove the equivalence between the existence of winning
strategyof the system player in the LRV game and the existence of an infinite
run in M ′.

Now we define a LRV[≈, ←] formula to force environment and system to
simulate runs of the LCM M ′ as follows. Suppose σ is the concrete model built
during a game. The value of counter cj (for any j) before the ith transition
(encoded in the (i+1)st position) is the number of positions k < i+1 satisfying
the following three conditions: i) the position k should have the label of a
cj + + transition, ii) σ(k)(x) 6∈ {σ(k′)(x) | k + 1 < k′ < i + 1} and iii) there
should not be any zero testing transition for counter cj between positions k
and i + 1. Intuitively, if (i + 1) is the current position, the value of cj is the
number of positions from the last zero testing transition for cj that have the
label of a cj + + transition and whose data value is not yet matched by a
position with the label of a cj −− transition.

In this reduction we assume that system plays first and environment plays
next at each round, since it is easier to understand (the reduction also holds
for the game where turns are inverted by shifting environment behavior by one
position). At each round, system chooses the transition of the LCM M ′ and
sets the value of its variables to complete the simulation. To this end, system
is bound by the following set of rules:

1. The transition (p5, ε, q) should have been taken at some point of time
for some q ∈ Q. Let pjt5 be a boolean variable belonging to the system
player corresponding to such a transition for jth state in Q. Then the
following formula captures this situation.

ϕ1 ≡
∨

j:qj∈Q

F(pjt5)

2. The transitions taken by system should be compatible. Let for any
transition t, pt be the corresponding boolean variable belonging to the
system player.

ϕ2 ≡ G(
∧

t any transition

(pt ⇒ (
∨

t′:(t,t′) compatible

Xpt′)))

3. At a ci++ transition, the variable xi should take a new data value from
the domain which has not been used so far.

ϕi3 ≡ G((
∨

t increments ci

pt)⇒ ¬(xi ≈ ♦−1xi))

And ϕ3 =
5∧
i=1

ϕi3

25

4. At a zero testing transition ci = 0?, the variable xi should take a new
data value (without loss of generality).

ϕi4 ≡ G((
∨

t is ci=0?

pt)⇒ ¬(xi ≈ ♦−1xi))

And ϕ4 =
5∧
i=1

ϕi4

5. At a decrementing transition ci − −, the data value at the variable xi
should repeat in the past at a ci + + transition.

ϕi5 ≡ G((
∨

t decrements ci

pt)⇒ (xi ≈ 〈τci++?〉−1xi))

And ϕ5 =
5∧
i=1

ϕi5

where τci++ checks that the current position is an incrementing transi-
tion for counter ci.

6. Any data value can repeat only atmost twice. This is equivalent to
saying that it is not true that any data value occurs three times.

ϕi6 ≡ G(¬(xi ≈ 〈(xi ≈ ♦−1xi)?〉−1xi))

And ϕ6 =
5∧
i=1

ϕi6

From these rules, it follows that every ci + + can be matched to at most
one future ci −−. Now note that, in incrementing transitions, system cannot
cheat. Also, there is no possibility of cheating in the zero testing transitions
by the system player since we are considering the lossiness relation to be reset
lossiness; hence whenever there is a zero test for a counter, that counter can
become zero immediately. But this coding can fail in the following way: there
could be some ci −− transition and its matching ci + + transition such that
there exists a zero test ci = 0? in-between. The variable b helps capturing the
occurrence of this.

In all the rounds, environment always plays >, except if it detects that this
above situation has arisen, in which case it plays ⊥. In that case system has
to satisfy a formula that will ensure that if there was indeed the situation,
system will lose, or if environment was just ‘bluffing’, then system will win.

Avoiding illegal decrements: Suppose, at some point of the simulation of
the LCM M ′, system decides to play a ci−− transition such that in-between

26

this transition and its matching incrementing transition ci + +, there is a
zero testing transition ci = 0?. This is a form of cheating by system and
environment should respond accordingly. Also assume that this is the first
cheating that has occurred so far. Environment, who so far has been playing
only>, decides then to mark this position with⊥; and for the remaining of the
play environment plays only > (even if more illegal transitions are performed
in the sequel). So, for this situation environment’s best strategy has a value
sequence from >∗⊥>ω, and the following property characterizes environment’s
denouncement of an illegal decrement.

Property 1: b becomes ⊥ at a ck−− position and stops being ⊥ immediately
after.

The following formula π1 can test Property 1.

π1 = bU(¬b ∧ τci−− ∧ X(Gb))

Now if environment declares a cheating, then system has to justify it. In
other words, system has to satisfy the follwoing formula along with the ones
listed above:

(7) If at some position b turns to ⊥ (let the corresponding transition be
ci − −), then the corresponding counter value at that position should
repeat in past at some incrementing position, but there should not be
any zero test in-between.

ϕi7 ≡ π1 ⇒ G(¬b⇒ xi ≈ 〈τci++ ∧ (¬τci=0?U¬b)?〉−1xi)

And ϕ7 =
5∧
i=1

ϕi7

Note that, each of the formulas ϕ3, . . . , ϕ7 are conjuncts of five disjoint
formulas, for five different counters.

Now we define the winning condition for system player in the LRV game
to be

ϕ =
7∧
i=1

ϕi

It follows that system has a winning strategy for the game with input ϕ if and
only if there is a positive answer to the existential infinite run problem for
the lossy counter machine.

27

Correctness. First suppose that the LCM M has an infinite run starting
from some initial configuration (q, n1, . . . , n5). In that case, the system player
makes the counter values as required using the self loops of the states pi,
after some point it reaches q and from q, system’s strategy would be to play
according to the infinite run of M . This way ϕ1 holds. ϕ2 also becomes true
since system actually follows the transitions of M . With respect to the data
values on c1, . . . , c5, system will respect the rues from (3)-(6). That will satisfy
ϕ3, . . . , ϕ6.

If the environment declares a cheating (plays a ⊥), the transitions of M
makes sure that from the last zero test for that counter, the increments can
be matched with decrements which makes the formula ϕ7 true.

Now suppose there is no infinite run of the LCM starting from any ini-
tial configuration, then each play of system satisfying ϕ1, . . . , ϕ6 must have
an illegal transition of the kind stated above (at a decrementing transition,
the value of the corresponding variable should have repeated in past but in
between a zero test occurs). At such first illegal transition, environment plays
a ⊥ and plays > in rest of the play. In this case, the antecedent of ϕ7 will be
true but the consequent will be false; thus ϕ7 becomes false making system
uncapable of finding a winning strategy.

This concludes the proof of Theorem 8.

The following result follows immediately.

Corollary 9. The existence of winning strategy for single-sided LRV[←]
games is undecidable, even when environment has 1 Boolean variable and sys-
tem has 5 data variables (and some boolean variables).

28

Chapter 4

Conclusion

In this thesis, we have extended the work done in section 5 of [7] and have
shown that the decidability result does not hold for the realizability problem
even for single-sided games if we allow nested formulas in past obligations.

As mentioned in the conclusion of [7], one possible future direction for
future work would be to look for restriction of LRV games other than single-
sidedness to get decidability for the realizability problem in section 3.1 (and
also in section A.1).

For the decidable cases, we do not know how the structures of winning
strategies will be. That is a possible direction we can look into. For exam-
ple whether the strategy needs any memory or not; if yes then is it finitely
representable etc.

The result we prove in section 3.1 is for a restriction of the nested formulas
where we show that the realizability problem is decidable whereas in A.2 we
have shown that with unrestricted nested formulas, it is undecidable. We do
not know whether this boundary is tight i.e. the problem for nested formulas
of special form which is a bit more extension of what we assume in section
3.1.

The undecidability result shown in sectionA.2 is based on a reduction from
existential infinite run problem of a lossy counter machine. In this reduction
we show that given a LCM, there exists an initial configuration from which
there exists an infinite run iff system has a winning strategy in the game.
Therefore, the game we consider here are infinite duration games. It would
be interesting to investigate similar result for finite duration games also. It
would be nice if we find a different undecidability proof where this assumption
of infiniteness is not necessary or it might be decidable for finite games.

29

Bibliography

[1] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity
games on integer vectors. In CONCUR 2013, volume 8052 of LNCS,
pages 106–120. Springer Berlin Heidelberg, 2013.

[2] M. Bojańczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin.
Two-variable logic on data words. ACM Transactions on Computational
Logic, 12(4):27, 2011.

[3] S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating
values. Journal of Logic and Computation, 22(5):1059–1096, 2012.

[4] S. Demri, D. Figueira, and M. Praveen. Reasoning about Data Rep-
etitions with Counter Systems. Logical Methods in Computer Science,
Volume 12, Issue 3:1–55, Aug 2016.

[5] S. Demri and R. Lazić. LTL with the freeze quantifier and register au-
tomata. ACM Transactions on Computational Logic, 10(3), 2009.

[6] D. Figueira. A decidable two-way logic on data words. In LICS’11, pages
365–374. IEEE, 2011.

[7] Diego Figueira and M. Praveen. Playing with repetitions in data words
using energy games. In LICS, 2018.

[8] A. Kara, Th. Schwentick, and Th. Zeume. Temporal logics on words with
multiple data values. In FST&TCS’10, pages 481–492. LZI, 2010.

[9] Richard Mayr. Lossy counter machines. 1998.

[10] M. L. Minsky. Recursive unsolvability of post’s problem of ‘tag’ and
other topics in the theory of turing machines. Annals of Mathematics,
74:437–455, 1961.

[11] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings
over infinite alphabets. volume 5, pages 403–435, 2004.

30

[12] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. Automata, Languages and Programming, pages 652–671, 1989.

[13] L. Segoufin. Automata and logics for words and trees over an infinite
alphabet. In CSL’06, volume 4207 of Lecture Notes in Computer Science,
pages 41–57. Springer, 2006.

31

Appendix A

A.1 Decidability of single-sided LRV[>,←] games

In this section, we shall briefly present the proof from Section 5 of [7]. More
precisely, in this section, we shall show that the single-sided LRV[>,←] game
is decidable. To prove this, we shall first show that given a formula ϕ in
LRV[>,←], we can transform it to a formula ϕ′ in LRV[>,≈,←] such that
the system player has a winning strategy with winning condition ϕ iff it has
a winning strategy with winning condition ϕ′ and then prove the decidability
for LRV[>,≈,←] games.

Proposition 10. The winning strategy existence problem for LRV[>,←] is
polynomial-time reducible into the problem on LRV[>,≈,←].

Proof. It is proved in the same way as for the satisfiability problem in [4,
Proposition 4]. Note that

• ¬(x 6≈ ♦−1y) is equivalent to ¬X−1> ∨ (x ≈ X−1y ∧ G−1(¬X−1> ∨ y ≈
X−1y)) (note that the later is in LRV[>,≈,←]);

• x 6≈ ♦−1y can be translated into ¬(x ≈ x≈♦−1y) ∧ x≈♦−1y ≈ ♦−1y where
x≈♦−1y is a new variable belonging to the same player as of x (note that
the later is in LRV[>,≈,←]).

Given any formula ϕ in negation normal form (i.e. , negation is only
applied to boolean variables and data tests) in LRV[>,←], construct the
formula ϕ′ using the replacements listed above. Note that ϕ′ is in LRV[>,≈
,←]. It is straightforward to show that there is a winning strategy for the
system player in the game with winning condition ϕ if and only if it has a
winning strategy for the game with winning condition ϕ′.

Now we move towards proving the fact that single-sided LRV[>,≈,←]
game is decidable and this will imply that single-sided LRV[>,←] game is

32

decidable because of Proposition 10. The main concept we use for proving
decidability is a symbolic representation of models, introduced in [3]. The
building blocks of the symbolic representation are frames. We shall show that
a single-sided LRV[>,≈,←] games can be efficiently reduced to a single-sided
VASS game such that the system player has a winning strategy in one iff it has
a winning strategy in the other. And because of Fact 3, the later is decidable;
and hence also the former.

Given a formula in LRV[>, ≈, ←], we first replace all the sub-formulas of
the form x ≈ X−jy with X−j(y ≈ Xjx) if j > 0 for simplicity. For a formula
ϕ obtained after such replacements, let l be the maximum i such that a term
of the form Xix appears in ϕ. We call l the ‘X-length’ of ϕ. Let BVARSϕ and
DVARSϕ denote the set of boolean and data variables respectively used in ϕ.
Let Ωϕ

l be the set of constraints of the form Xiq, Xix ≈ Xjy or Xi(x ≈ ♦−1y),
where q ∈ BVARSϕ, x, y ∈ DVARSϕ and i, j ∈ {0, . . . , l}. These are the
atomic constraints. Now we define frames. Intuitively, for any e ∈ {0, . . . , l},
an (e, ϕ)-frame consists of all possible formulas from Ωϕ

l which are true in the
next e-many positions.

Formally, for e ∈ {0, . . . , l}, an (e, ϕ)-frame is a set of constraints fr ⊆ Ωϕ
l

that satisfies the following conditions:

(F0) For all constraints Xiq,Xix ≈ Xjy,Xi(x ≈ ♦−1y) ∈ fr , i, j ∈ {0, . . . , e}.

(F1) For all i ∈ {0, . . . , e} and x ∈ DVARSϕ, Xix ≈ Xix ∈ fr .

(F2) For all i, j ∈ {0, . . . , e} and x, y ∈ DVARSϕ, Xix ≈ Xjy ∈ fr iff Xjy ≈
Xix ∈ fr .

(F3) For all i, j, j′ ∈ {0, . . . , e} and x, y, z ∈ DVARSϕ, if {Xix ≈ Xjy,Xjy ≈
Xj
′
z} ⊆ fr , then Xix ≈ Xj

′
z ∈ fr .

(F4) For all i, j ∈ {0, . . . , e} and x, y ∈ DVARSϕ such that Xix ≈ Xjy ∈ fr :

• if i = j, then for every z ∈ DVARSϕ we have Xi(x ≈ ♦−1z) ∈ fr iff
Xj(y ≈ ♦−1z) ∈ fr .

• if i < j, then Xj(y ≈ ♦−1x) ∈ fr and for any z ∈ DVARSϕ,
Xj(y ≈ ♦−1z) ∈ fr iff either Xi(x ≈ ♦−1z) ∈ fr or there exists
i ≤ j′ < j with Xjy ≈ Xj

′
z ∈ fr .

The condiditon (F0) says that an (e, ϕ)-frame constrain at most (e +
1) contiguous valuations. (F1)-(F3) says that the equality constraints in a
frame form an equivalence relation. The condition (F4) ensures that the past
obligations are consistent among the variables: if x-value repeats in past in
variable z and also if value of x is same as the data value of some y at the

33

current position, then we also add the formula that y-value repeats in past in
z.

Now we define one-step consistency between two frames. A pair of (l, ϕ)-
frames (fr , fr ′) is said to be one-step consistent iff the following conditions are
satisfied:

(O1) For all Xix ≈ Xjy ∈ Ωϕ
l with i, j > 0, we have Xix ≈ Xjy ∈ fr iff

Xi−1x ≈ Xj−1y ∈ fr ′,

(O2) For all Xi(x ≈ ♦−1y) ∈ Ωϕ
l with i > 0, we have Xi(x ≈ ♦−1y) ∈ fr iff

Xi−1(x ≈ ♦−1y) ∈ fr ′ and

(O3) For all Xiq ∈ Ωϕ
l with i > 0, we have Xiq ∈ fr iff Xi−1q ∈ fr ′.

For e ∈ {0, . . . , l−1}, an (e, ϕ) frame fr and an (e+1, ϕ) frame fr ′, the pair
(fr , fr ′) is said to be one step consistent iff fr ⊆ fr ′ and for every constraint
in fr ′ of the form Xix ≈ Xjy, Xiq or Xi(x ≈ ♦−1y) with i, j ∈ {0, . . . , e}, the
same constraint also belongs to fr .

Now we define symbolic models. An (infinite) (l, ϕ)-symbolic model ρ is
an infinite sequence of (l, ϕ)-frames such that for all i ∈ N \ {0}, the pair
(ρ(i), ρ(i+ 1)) is one-step consistent according to the above definition. Let us
define the symbolic satisfaction relation ρ, i |=symb ϕ

′ where ϕ′ is a sub-formula
of ϕ. The relation |=symb is defined in the same way as |= for LRV, except that
for every element ϕ′ of Ωϕ

l , we have ρ, i |=symb ϕ
′ whenever ϕ′ ∈ ρ(i). We say

that a concrete model σ realizes a symbolic model ρ if for every i ∈ N \ {0},
ρ(i) = {ϕ′ ∈ Ωϕ

l | σ, i |= ϕ′}. The next result follows easily from definitions.

Lemma 11 (symbolic vs. concrete models). Suppose ϕ is a LRV[>,≈,←]
formula of X-length l, ρ is a (l, ϕ)-symbolic model and σ is a concrete model
realizing ρ. Then ρ symbolically satisfies ϕ iff σ satisfies ϕ.

Now we define some useful notations we shall use throughout this chapter.
Given a formula ϕ in LRV[>,≈,←] of X-length l, for e ∈ {0, . . . , l}, an (e, ϕ)-
frame fr , i ∈ {0, . . . , e} and a variable x, the set of past obligations of the
variable x at level i in fr (denoted by POfr(x, i)) is the set of past obligations
from x at level i those are present in fr . The equivalence class of x at level i
in fr (denoted by [(x, i)]fr) is defined to be the set of all the variables which
have the data value as of x at level i. In notation,

• POfr(x, i) = {y ∈ DVARSϕ | Xi(x ≈ ♦−1y) ∈ fr}.

• [(x, i)]fr = {y ∈ DVARSϕ | Xix ≈ Xiy ∈ fr}.

For e ∈ {0, . . . , l}, an (e, ϕ)-frame fr , i ∈ {0, . . . , e} and a variable x,

34

• We say there is a forward reference from (x, i) in fr if Xix ≈ Xi+jy ∈ fr .

• We say there is a backward reference from (x, i) in fr if Xix ≈ Xi−jy ∈ fr .

In some cases, there is no way to capture the data repetitions because in a
frame we only keep track of at most l contiguous positions. For that, we
maintain a counter corresponding to each subset of data variables to keep
track of the number of such remote data repetitions. Let X ⊆ DVARSϕ be a
subset of data variables. Then

• A point of decrement for counter X in an (e, ϕ)-frame fr is an equiva-
lence class of the form [(x, e)]fr such that there is no backward reference
from (x, e) in fr and POfr(x, e) = X.

• A point of increment for X in an (l, ϕ)-frame fr is an equivalence class
of the form [(x, 0)]fr such that there is no forward reference from (x, 0)
in fr and [(x, 0)]fr ∪ POfr(x, 0) = X.

We define points of increment only for (l, ϕ)-frames because (e, ϕ)-frames for
e < l do not contain complete information about constraints in the next l
positions. We denote by inc(fr) the vector indexed by non-empty subsets of
DVARSϕ, where each coordinate contains the number of points of increment
in fr for the corresponding subset of variables. Similarly, we have the vector
dec(fr) for points of decrement.

Here we give two examples of two different possible situations.

x
y

i i+1 i+l i+l+1

. . .d

d

d
j j+1 j+l j+l+1

. . .d' d'. . .

fri
fri+1 frj

frj+1

.

In the left column here, σ(i)(x) = σ(i+ 1)(y) = σ(i+ l+ 1)(x) = d, where
l is the X-length. The constraint x ≈ Xy in fr i above is a forward reference
from (x, 0) in fr i, while the constraint Xlx ≈ y is a backward reference from
(x, l) in fr i+1. This way we capture that data value of x at positions i and
i+ l + 1 are equal in this case.

But if we consider the right column, there we have σ(j)(x) = σ(j+l+1)(y).
We cannot capture this kind of situations (the two positions are too far apart,
neither are there any intermediate positions with the same data value) like in
the left column. In this, we find the use of introducing counters. Here, the
equivalence class [(x, l)]frj+1

in the frame fr j+1 is a point of decrement for {x}.

35

And the equivalence class [(x, 0)]frj
in the frame fr j is a point of increment

for {x}.
Given a LRV[>, ≈, ←] formula ϕ in which DVARSe = ∅ = BVARSs, we

construct a single-sided VASS game as follows. Fix the X-length of ϕ, let
it be l. Let FR be the set of all (e, ϕ)-frames for all e ∈ {0, . . . , l}. Note
that the symbolic satisfiability defined above is just like LTL satisfiability.
Hence we can construct an automaton accepting the symbolic models which
symbolically satisfies ϕ. Let Aϕ be a deterministic parity automaton that
accepts a symbolic model iff it symbolically satisfies ϕ. Let Qϕ be the set of
states of Aϕ and qϕinit be the initial state .

The single-sided VASS game will have set of counters P+(DVARSϕ), set of
environment states {−1, 0, . . . , l}×Qϕ× (FR∪ {⊥}) and set of system states
{−1, 0, . . . , l} × Qϕ × (FR ∪ {⊥}) × P(BVARSϕ). The colour of a state will
be the colour of its Qϕ component. We assume ⊥ to be the only (−1, ϕ)-
frame and (⊥, fr ′) be one-step consistent for every 0-frame fr ′. Initially all
the counters have value 0. The initial state is (−1, qϕinit ,⊥). Let d·el denotes
the mapping that is identity on {−1, 0, . . . , l − 1} and maps all others to l.
The transitions of the VASS game are listed below:

• (e, q, fr)
~0−→ (e, q, fr , V) for every e ∈ {−1, 0, . . . , l}, q ∈ Qϕ, fr ∈ FR ∪

{⊥} and V ⊆ BVARSϕ.

• (e, qϕinit , fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (e+1, qϕinit , fr

′) for every V ⊆ BVARSϕ, e ∈
{−1, 0, . . . , l−2}, (e, ϕ)-frame fr and (e+1, ϕ)-frame fr ′, where the pair
(fr , fr ′) is one-step consistent and {p ∈ BVARSϕ | Xe+1p ∈ fr ′} = V .

• (e, q, fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (de+ 1el, q′, fr ′) for every e ∈ {l− 1, l}, (e, ϕ)-

frame fr , V ⊆ BVARSϕ, q, q′ ∈ Qϕ and (de+1el, ϕ)-frame fr ′, where the
pair (fr , fr ′) is one-step consistent, {p ∈ BVARSϕ | Xde+1elp ∈ fr ′} = V

and q
fr ′−→ q′ is a transition in Aϕ.

The first kind of transitions are chosen by the environment player and note
that the counter values do not change (ensures that game is single-sided). In
this, the environment player chooses a set of variables to make them true in
the next round. In the second and third kind of transitions, the condition
{p ∈ BVARSϕ | Xde+1elp ∈ fr ′} = V makes sure that the frame fr ′ chosen by
system should be compatible with the subset V chosen by environment in the

previous step. In the third kind of transition, the condition q
fr ′−→ q′ ensures

that the symbolic model is accepted by Aϕ and hence symbolically satisfies
ϕ. The update vector inc(fr) − dec(fr ′) ensures that symbolic models are
realizable, which we shall show formally next.

36

Theorem 12 (repeating values to VASS). Let ϕ be a LRV[>, ≈, ←] formula
with DVARSe = BVARSs = ∅. Then system has a winning strategy in the
corresponding single-sided LRV[>, ≈, ←] game iff it has a winning strategy
in the single-sided VASS game constructed above.

Proof. Result follows from the following two lemmas.

Lemma 13. If system has a winning strategy in the single-sided LRV[>, ≈,
←] then it has a winning strategy in the single-sided VASS game constructed
above.

Proof. We shall define a map µ : (P(BVARSϕ))∗ → FR ∪ {⊥}; it is then
straight-forward to construct a strategy for system in the VASS game. For
every sequence χ ∈ (P(BVARSϕ))∗, we will define µ(χ) and a concrete model
of length |χ|, by induction on |χ|. For the base case |χ| = 0, the concrete
model is the empty sequence and the frame is ⊥.

For the induction step, suppose χ = χ′ ·V and σ is the concrete model de-
fined for χ′ by induction hypothesis. Let υe : BVARSe → {>,⊥} be such that
υe(p) = > iff p ∈ V . The system player’s winning strategy ts in the single-
sided LRV[>, ≈,←] game will give a valuation ts(σ ·υe) = υs : DVARSs → D.
We define the finite concrete model corresponding to χ to be σ · (υe⊕υs) and
µ(χ) to be the frame fr ′ = {ϕ′ ∈ Ωϕ

l | σ · (υe ⊕ υs), |σ|+ 1− d|σ|el |= ϕ′}.
Let ss be the system player’s strategy that we get from χ in the VASS

game, resulting in the sequence of states

(−1, qϕinit ,⊥)(−1, qϕinit ,⊥, V1)(0, q
ϕ
init , fr 1)(0, q

ϕ
init , fr 1, V2)

(1, qϕinit , fr 2) · · · (l, q, fr l+1)(l, q, fr l+1, Vl+2)(l, q
′, fr l+2) · · ·

The sequence fr l+1fr l+2 · · · is an (l, ϕ)-symbolic model; call it ρ. From
the construction, ρ is realized by a concrete model σ, which is the result of
the system player’s winning strategy ts . So σ, 1 |= ϕ and by Lemma 11,
ρ |=symb ϕ. Also, since the strategy follows the transitions Aϕ, it satisfies
the parity condition. Now it remains to show that the counter value remains
non-negative always.

Initially all counters are 0. In the first l + 1 frames, any counter cannot
decrement since it would have a backward reference. Now it is enough to show
that we can assign a unique point of increment to each point of decrement for
every counter in any frame fr i for i > l+ 1. Suppose, for some x ∈ DVARSϕ,
[(x, l)]fr i

is a point of decrement for X. Choose the last position before i such
that σ(i′)(x′) = σ(i)(x) and associate with [(x, l)]fr i

the class [(x′, 0)]fr i′+l
.

Now have to show that this is unique. Suppose for contradiction, it is also
associated with [(y, l)]frj

, which is a point of decrement for X in fr j. Then
σ(j)(y) = σ(i)(x). If i = j, then [(y, l)]frj

= [(x, l)]fr i
. Now suppose j < i.

37

then j ∈ {1, . . . , i−l−1} (otherwise it would have a backward reference which
contradicts the fact that X has a point of decrement); now if we compute j′

for [(y, l)]frj
like we computed i′ for [(x, l)]fr i

, then we get j′ < i′ (since j ≤ i′).
Similarly if we assume j > i, then i ∈ {1, . . . , i− j−1}, hence i ≤ j′ implying
i′ < j′; hence [(y′, 0)]frj′+l

we associate with [(y, l)]frj
would be different from

[(x′, 0)]fr i′+l
.

Lemma 14. If system has a winning strategy in the single-sided VASS game
constructed above, then it has a winning strategy in the single-sided LRV[>,
≈, ←].

Proof. Let ss be the system’s strategy in the VASS game. For every σ ∈ Υ∗

and every υe ∈ Υe, we will define ts(σ · υe) : DVARSϕ → D and a sequence of
configurations χ·((e, q, fr), ~ninc−~ndec) in (Q×NC)∗·(Qe×NC) of length 2|σ|+3
such that for every counter X ∈ P+(DVARSϕ), ~ninc(X) (resp. ~ndec(X)) is the
sum of the number of points of increment (resp., points of decrement) for X
in all the frames occurring in χ. By frames occurring in χ, we refer to frames
fr such that there are consecutive configurations ((e, q, fr), ~n)((e, q, fr , V), ~n)
in χ. By ΠFR(χ)(i), we refer to ith such occurrence of a frame in χ. We induct
on |σ|. Let {d0, d1, . . .} ⊆ D be a countably infinite set of data values.

When |σ| = 0, let V be defined s.t. p ∈ V iff υe(p) = >. Let (−1, qϕinit ,⊥, V)
~0−dec(fr1)−−−−−−→

(0, q, fr 1) be the transition chosen by ss . Since it is winning, hence dec(fr 1) is
0. We define some unused data value to each equivalence class in fr 1. And de-
fine the sequence of configurations to be ((−1, qϕinit ,⊥),~0)·((−1, qϕinit ,⊥, V),~0)·
((0, q, fr 1),−dec(fr 1)).

For the induction step, suppose σ ·υe = σ′ ·(υe1⊕υs1)·υe and χ′ ·((e, q, fr), ~n)
is the sequence of configurations given by the induction hypothesis for σ′ · υe1.
We have {ϕ′ ∈ Ωϕ

l | σ′ · (υe1 ⊕ υs1), |σ′|+ 1− e |= ϕ′} = fr (otherwise, it would
mean that the system player has already deviated from the strategy defined
so far; in that case we choose arbitrarily). Let V be defined s.t. p ∈ V iff

υe(p) = >. Let (e, q, fr , V)
inc(fr)−dec(fr ′)−−−−−−−−−→ (de + 1el, q′, fr ′) be the transition

chosen by ss . We define the sequence of configurations as χ′ · ((e, q, fr), ~n) ·
((e, q, fr , V)~n) · ((de + 1el, q′, fr ′), ~n + inc(fr) − dec(fr ′)). Since ss is winning
for system, hence ~n + inc(fr) − dec(fr ′) ≥ 0. To define ts(σ · υe), to each
equivalence class [(x, de+ 1el)]fr ′ , assign the data value d′ as defined below:

1. If x has a backward reference at level l in fr ′, then choose the data value
to be the data value at that position.

2. If there is no backward reference and no past obligations also, then
assign a new data value.

38

3. Otherwise, it is a point of decrement for some X. Match it with a
point of increment in a frame that has not been paired off before (it is
possible because (~n + inc(fr))(X) ≥ dec(fr ′)(X)). Suppose we pair off
[(x, de + 1el)]fr ′ at level (e + 1) in fr ′ with a point of increment [(y, 0)]
in the frame fr i = ΠFR(χ′ · ((e, q, fr), ~n) · ((e, q, fr , V), ~n))(i). Then we
define d′ to be σ′ · (υe1 ⊕ υs1)(i)(y).

Suppose ss results in the model σ = (υe1 ⊕ υs1) · (υe2 ⊕ υs2) · · · . It is clear
from the construction that there is a sequence of configurations

((−1, qϕinit ,⊥),~0)((−1, qϕinit ,⊥, V1),~0)

((0, qϕinit , fr 1), ~n1)((0, q
ϕ
init , fr 1, V2), ~n1)

((1, qϕinit , fr 2), ~n2) · · · ((l, q, fr l+1), ~nl+1)

((l, q, fr l+1, Vl+2), ~nl+1)((l, q
′, fr l+2), ~nl+2) · · ·

in the single-sided VASS game such that the concrete model σ realizes the
symbolic model fr l+1fr l+2 · · · . Since ss is winning for the system player, the
sequence of configurations above satisfy the parity condition of the single-
sided VASS game, so fr l+1fr l+2 · · · symbolically satisfies ϕ. From Lemma 11,
we conclude that σ satisfies ϕ.

This concludes the proof of Theorem 12.

A.2 Undecidability of single-sided LRV[>, ≈,
→] games

In the previous section, we have shown that the existence of winning strat-
egy for single-sided LRV games with past and equality constraints and with
no nested formula is decidable. But in this secetion, we shall see that if in-
stead of past, if we allow only future obligations then this problem becomes
undecidable [7, Section 6].

Theorem 15. The existence of winning strategy for single-sided LRV[>,≈
,→] games is undecidable, even when environment has 1 Boolean variable and
system has 3 data variables (and some boolean variables).

Proof. We prove this result by showing a reduction from the undecidability
problem for a 2-counter machine M defined in Theorem 1. System makes use
of labels to encode the sequence of transitions of a witnessing run of the CM.
The undecidability result is true even when system has 3 data variables x, y, z
(in addition to a number of Boolean variables which encode the labels); and

39

(_,
c x

++,_)

bis (_,
c y

++,_)

bis (_,
c x

– –
,_)

bis (_,
c y

– –
,_)

bis (_,
c x

=0?
,_)

bis (_,
c y

=0?
,_)

bis

y

x x

y

x

y

x

y

principal value
secondary value

Figure A.1: Properties of data values of variables

environment has just one Boolean variable b. For convenience, we name the
counters of the 2-counter machines cx and cy instead of c1 and c2. Variables
x, y are used to encode the counters cx and cy as before, and variables z, b are
used to ensure that there are no ‘illegal’ transitions — namely, no decrements
of a zero-valued counter, and no tests for zero for a non-zero-valued counter.

Each transition in the run of the 2-counter machine will be encoded us-
ing two consecutive positions of the game. In this encoding, transitions are
interspersed with a special bis label, and thus a witnessing reachability run
t1 t2 · · · tn ∈ δ∗ is encoded as t1bis t2 bis · · · tn bis (t̂ bis)ω ∈ (δ ∪ {bis})ω. We
will see why we need two positions per transition.

Now we define a LRV[>, ≈,→] formula to force environment and system to
simulate runs of the 2-counter machineM as follows. Suppose σ is the concrete
model built during a game. The value of counter cx before the ith transition
(encoded in the 2ith and (2i+ 1)st positions) is the number of positions j < 2i
satisfying the following two conditions: i) the position j should have the label
of a cx + + transition and ii) σ(j)(x) 6∈ {σ(j′)(x) | j + 1 < j′ < 2i}. Same for
counter cy. Intuitively, at some position, the value of a counter is the number
of incrementing positions of that counter before the current position whose
data value is not yet matched with any position.

In this reduction we assume that system plays first and environment plays
next at each round, since it is easier to understand (the reduction also holds
for the game where turns are inverted by shifting environment behavior by one
position). At each round, if the last label played was a transitionsystem will
play a label bis. Otherwise, it will choose the next transition of the 2-counter
machine to simulate. To follow the encoding above, system will follow the
rules described pictorially in Figure A.1.

The properties of data values are clear from the figure itself. For example,
the first (leftmost) rule in the figure says that whenever there is a cx + +
transition label, then all four values for x and y in both positions (i.e. , the
transition position and the next bis position) must have the same data value d
(which we call ‘principal’), which does not occur in the future under variable
y. The presence of two positions per transition ensures that (though we don’t

40

use past obligations,) if at a position has the label of a cx + + transition and
the variable x has the data value d and the data value d repeats in the future,
it will be only once and at a position that has the label of a cx−− transition.

The LRV formula for the rules depicted in the figure is the following:

ϕx,y = G(
∧
a∈A

τa ⇒ ζa)

where A = {cx + +, cx −−, cx = 0?, cy + +, cy −−, cy = 0?} and

τa =
∨

q,q′∈Q,(q,a,q′)∈δ

λ(q,a,q′),

where λ(q,a,q′) tests that we are standing on a position labelled with tran-
sition (q, a, q′) (in particular not a bis position). And ζa encodes the rules as
already described. That is,

ζcx++ = x ≈ y ∧ x ≈ Xx ∧ y ≈ Xy ∧ ¬X(x ≈ ♦y),

ζcx−− = ¬x ≈ y ∧ ¬x ≈ ♦x ∧ ¬x ≈ ♦y ∧
y ≈ Xy ∧ y ≈ Xx,

ζcx=0? = x ≈ y ∧ x ≈ Xx ∧ y ≈ Xy,

and similarly for the rules on cy.

But there can be two ways in which this coding can fail: a) there could
be invalid tests ck = 0?, and b) there could be some ck −− with no previous
matching ck + + (for k ∈ {x, y}). Variables z and b play a crucial role in the
game whenever any of these two cases occurs as explained next.

(a) Avoiding illegal tests for zero: Suppose there is some preceding ck++
transition for which either: (a1) there is no matching ck − − transition; this
situation is avoided by the following formula: µ = G(τ(ck++) ∧ Fτ(ck=0?) ⇒
k ≈ ♦k) or (a2) there is a matching ck −− transition but it occurs after the
ck = 0? transition. For (a2), suppose this is the first illegal transition that has
occurred so far. Then environment will choose b to be ⊥ at this position and
will continue playing ⊥ till the next matching ck −− transition (if it is never
reached, it is situation a1); in rest of the places b value will be >. So, for this
situation environment’s best strategy has a value sequence from >∗⊥∗>ω, and
the following property characterizes environment’s denouncement of an illegal
zero test. In the following, we analyze the case assuming k = x; the final
formula will be a conjunct of two such formulas each for k = x and k = y.

• A formula π1 can test the property: b becomes ⊥ at a cx = 0? position
and stops being ⊥ at a cx −− position thereafter.

41

(_,c x+
+,_)

bis (_,c x–
 –,_)

bis(_,c x=
0?,_)

bis
x
y

.
z
b ⊤ ⊥ ⊥ ⊥⊤ ⊤ ⊤

.
.

(_,c x–
 –,_)

bis
x
y

.
z
b ⊥ ⊤

.

.⊤

situation a2) situation b)

Figure A.2: Depiction of best strategies in both situations.

π1 = bU(¬b ∧ τcx=0? ∧ X(¬bUτcx−−))

• A formula ϕ1 constrains that z takes the same data value which is
different than all the values of all other variables until the last ⊥ is
played by environment, from the next position z takes the current value
of x forever.

ϕ1 = ¬(z ≈ ♦x ∨ z ≈ ♦y) ∧
(z ≈ Xz)U

(
¬(z ≈ Xz) ∧ ¬b ∧ Xb ∧ x ≈ Xz ∧ XG(z ≈ Xz)

)
• Further, environment can cheat in his denouncement by linking a cx = 0?

transition with a future cx − − with a matching cx + + that falls in-
between zero test and the decrement.A formula π′1 can test this: there
exists a cx + + with ⊥ whose principal value matches that of a future
z-value.

π′1 = F(τcx++ ∧ ¬b ∧ x ≈ ♦z)

• If environment’s denouncement was correct, the following formula en-
sures that there exists a cx + + transition whose principal value corre-
sponds to the z-value of some future position.

ϕ′1 = F(τcx++ ∧ x ≈ ♦z).

Thus, the encoding for this situation is expressed with the formula ψ1 =
ψx1 ∧ ψ

y
1 where ψx1 = µ ∧ ((π1 ∧ ¬π′1) ⇒ (ϕ1 ∧ ¬ϕ′1)) and same way we define

ψy1 .

This situation is depicted in Figure A.2.

(b) Avoiding illegal decrements.

Supoose there is a decrementing transition ck −− but it has no matching
ck + + transition having the same value. To expose this kind of cheating by
system (assume this is the first illegal transition made), environment plays ⊥ at

42

the current decrementing position and > in others. So, for this situation envi-
ronment’s best strategy has a value sequence from >∗⊥>ω, and the following
property characterizes environment’s denouncement of an illegal decrement.

Again we do it for k = x; the final formula will be a conjunct of two such
formulas each for k = x and k = y.

• Formula π2 tests that b becomes ⊥ at a cx −− position and remains >
at a cx −− position thereafter.

π2 = bU(¬b ∧ τcx−− ∧ X(Gb))

• Like ϕ1, a formula can constrain the z value.

ϕ2 = ¬(z ≈ ♦x ∨ z ≈ ♦y) ∧
(z ≈ Xz)U

(
¬(z ≈ Xz) ∧ ¬b ∧ x ≈ Xz ∧ XG(z ≈ Xz)

)
• A formula ϕ′2 tests that in this situation there must be some cx + +

position with a data value equal to variable z of a future position:

ϕ′2 = F(τcx++ ∧ x ≈ ♦z).

Thus, the encoding for this situation is expressed with the formula ψ2 =
ψx2 ∧ ψ

y
2 where ψx2 = π2 ⇒ ϕ2 ∧ ϕ′2 and same way we define ψy2 .

This situation is also depicted in Figure A.2.

The final formula to test is then of the form ϕ = ϕlab ∧ ϕx,y ∧ ψ1 ∧ ψ2,
where ϕlab ensures the finite-automata behavior of labels, and in particular
that a final state can be reached, and ϕx,y, ψ1 and ψ2 are described above.

Correctness. Suppose first that the 2-counter machine has an accepting
run (qinit , I1, q1) · · · (qn−1, In, qn) with qn = qf . System’s strategy is then to
play (the encoding of) the labels

(q0, I1, q1) bis · · · (qn−1, In, qn) bis (t̂ bis)ω.

Therefore the formula ϕ1 is satisfied. For assigning the data values to the
variables, system will follow the rules depicted in Figure A.1 satisfying ϕx,y.

Also system will assign to z such a value which is different from all the
data values in x and y until b becomes ⊥. At the next position after the last
⊥, it will assign the value of x at the position of last ⊥ and keeps forever. If
it is due to an illegal zero test (a2), ϕ1 ∧ ¬ϕ′1 is true making ψ1 true, in the
other case (b), ϕ2 ∧ ϕ′2 will be true making ψ2 true; all other cases of b are

43

also winning for system because antacedent will become false. Therefore this
raises to a winning strategy for system player in the single-sided LRV[>, ≈,
→] game.

Now suppose there is no accepting run for the counter machine from the
initial configuration. Then for any play of system satisfying ϕlab and ϕx,y must
have an illegal transition of one kind where environment will play ⊥. If it is
at a decrementing transition, environment will again play > forever; if it was
a zero test, i.e. of type (a), then it keeps playing ⊥ until the corresponding
ck−− matching a witness to a witnessing ck++ before the ck = 0? is reached
(plays > afterwards). In either case, the antecedent of ψ1 or ψ2 will be true
but the consequent will be false making one of them false. Hence]sys does
not have any winning strategy in the LRV[>, ≈, →] game.

This concludes the proof of Theorem 15.

44

	Introduction
	Preliminaries
	Logic of repeating values
	Game of repeating values
	2-Counter Machine
	Lossy Counter Machine
	Parity games on integer vectors

	Realizability of LRV With Nested Formulas
	Decidability of single-sided LRV[, ,] games
	Undecidability of single-sided LRV[,] games

	Conclusion
	
	Decidability of single-sided LRV[,] games
	Undecidability of single-sided LRV[, ,] games

