Width of Non-Deterministic Automata

Denis Kuperberg ${ }^{1}$, Anirban Majumdar ${ }^{2}$

${ }^{1}$ ENS Lyon, France
${ }^{2}$ Chennai Mathematical Institute, India
March 01, 2018

Introduction

- NFA \rightarrow DFA: Important
- Complementation of NFA
- Language inclusion testing
- Synthesis of reactive controllers
- Text searching
- Regular Expression matching

Introduction

- NFA \rightarrow DFA: Important
- Complementation of NFA
- Language inclusion testing
- Synthesis of reactive controllers
- Text searching
- Regular Expression matching
- NFA \rightarrow DFA: Hard
- Exponential blow-up unavoidable.
- Heuristics are developed to speed-up determinization or avoid it.

Introduction

- NFA \rightarrow DFA

Introduction

- NFA \rightarrow DFA : Subset Construction

Introduction

- NFA \rightarrow DFA : Subset Construction

Introduction

- NFA \rightarrow DFA : Subset Construction

- Follows n runs simultaneously (n is the number of states)

Introduction

- NFA \rightarrow DFA : Subset Construction

- Follows n runs simultaneously (n is the number of states)
- Is ' n ' always necessary?

Introduction

- NFA \rightarrow DFA : Subset Construction

- Follows n runs simultaneously (n is the number of states)
- Is ' n ' always necessary ?
- Can we get a DFA keeping track of ' k ' runs ? $(k<n)$

Example...

$$
\Sigma=\{a, b\}
$$

Example...

$\Sigma=\{a, b\}$

Language: $\Sigma^{*} a \Sigma \geq n$

Example...

$$
\mathrm{n}=3:
$$

Language: $\Sigma^{*} a \Sigma^{\geq 3}$

Example...

Example...

Exponential number of states

Example...

Example...

2 runs are sufficient

Introduction

- NFA \rightarrow DFA: Subset Construction

- Follows n runs simultaneously (n is the number of states)
- Is ' n ' always necessary ?
- Can we get a DFA keeping track of ' k ' runs ? $(k<n)$
- Save space in determinization.

Introduction

- NFA \rightarrow DFA: Subset Construction

- Follows n runs simultaneously (n is the number of states)
- Is 'n' always necessary ?
- Can we get a DFA keeping track of ' k ' runs ? $(k<n)$
- Save space in determinization.
- Goal : Find minimum ' k ' such that k runs are enough.

Introduction

- NFA \rightarrow DFA: Subset Construction

- Follows n runs simultaneously (n is the number of states)
- Is ' n ' always necessary ?
- Can we get a DFA keeping track of ' k ' runs ? $(k<n)$
- Save space in determinization.
- Width : minimum ' k ' such that k runs are enough.

Good-For-Games Automata

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}.

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.
q_{0}

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}}
$$

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1}
$$

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}}
$$

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} q_{3} \rightarrow \cdots
$$

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} q_{3} \rightarrow \cdots
$$

Eve wins a play if ($w \in \mathcal{L}(\mathcal{A}) \Rightarrow$ the run is accepting).

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} q_{3} \rightarrow \cdots
$$

Eve wins a play if ($w \in \mathcal{L}(\mathcal{A}) \Rightarrow$ the run is accepting).
\mathcal{A} is called GFG iff Eve has a winning strategy

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} q_{3} \rightarrow \cdots
$$

Eve wins a play if ($w \in \mathcal{L}(\mathcal{A}) \Rightarrow$ the run is accepting).
\mathcal{A} is called GFG iff Eve has a winning strategy: Whatever word Adam chooses, if it is in the language, the strategy gives an accepting run.

Good-For-Games Automata

$\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, \alpha\right)$ be an automaton with acceptance condition α.
Consider the following two-player game on \mathcal{A}. In each round, Adam chooses a letter and Eve chooses a transition.

$$
q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} q_{3} \rightarrow \cdots
$$

Eve wins a play if ($w \in \mathcal{L}(\mathcal{A}) \Rightarrow$ the run is accepting).
\mathcal{A} is called GFG iff Eve has a winning strategy: Whatever word Adam chooses, if it is in the language, the strategy gives an accepting run.

Example GFG

- Every DFA is GFG.
- Eve's choice is deterministic; if the word chosen by Adam is in the language of the automaton, then the run is accepting.

Example Non-GFG

Language: $\Sigma^{*} a \Sigma^{\geq 3}$.

Example Non-GFG

Language: $\Sigma^{*} a \Sigma^{\geq 3}$.
If Eve chooses the upper path, $a^{3} a$ is not accepted.
If Eve chooses the lower path, $a^{3} b$ is not accepted.

Some Results...

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ can be determinized deleting some unnecessary transitions

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ can be determinized deleting some unnecessary transitions (DBP).

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ can be determinized deleting some unnecessary transitions (DBP).
- Checking GFGness of a NFA is in \mathbf{P}

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ can be determinized deleting some unnecessary transitions (DBP).
- Checking GFGness of a NFA is in \mathbf{P} and removing useless transitions to obtain a DFA is also in \mathbf{P}.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA. We define width (\mathcal{A}) :

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

$$
\left\{q_{0}\right\} \xrightarrow{a_{0}} X_{1} \xrightarrow{a_{1}} X_{2} \xrightarrow{a_{2}} X_{3} \rightarrow \cdots
$$

$\left|X_{i}\right| \leq k$.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

$$
\left\{q_{0}\right\} \xrightarrow{a_{0}} X_{1} \xrightarrow{a_{1}} X_{2} \xrightarrow{a_{2}} X_{3} \rightarrow \cdots
$$

$\left|X_{i}\right| \leq k$.
Eve wins a play if $\left(a_{1} a_{2} \ldots a_{r} \in \mathcal{L}(\mathcal{A}) \Rightarrow X_{r} \cap F \neq \emptyset\right)$ for all r.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

$$
\left\{q_{0}\right\} \xrightarrow{a_{0}} X_{1} \xrightarrow{a_{1}} X_{2} \xrightarrow{a_{2}} X_{3} \rightarrow \cdots
$$

$\left|X_{i}\right| \leq k$.
Eve wins a play if $\left(a_{1} a_{2} \ldots a_{r} \in \mathcal{L}(\mathcal{A}) \Rightarrow X_{r} \cap F \neq \emptyset\right)$ for all r.
If Eve has a winning strategy then we say width $(\mathcal{A}) \leq k$.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, \alpha\right)$ be an automaton with acceptance condition α. We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

$$
\left\{q_{0}\right\} \xrightarrow{a_{0}} X_{1} \xrightarrow{a_{1}} X_{2} \xrightarrow{a_{2}} X_{3} \rightarrow \cdots
$$

$\left|X_{i}\right| \leq k$.
Eve wins a play if $\left(a_{1} a_{2} \ldots \in \mathcal{L}(\mathcal{A}) \Rightarrow\right.$ the sequence $X_{0} X_{1} X_{2} \ldots$ contains an accepting run of \mathcal{A}).
If Eve has a winning strategy then we say width $(\mathcal{A}) \leq k$.

Width

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, \alpha\right)$ be an automaton with acceptance condition α. We define width (\mathcal{A}) :
We play the GFG game on \mathcal{A}, except that now Eve can choose sets of size at most ' k '.

$$
\left\{q_{0}\right\} \xrightarrow{a_{0}} X_{1} \xrightarrow{a_{1}} X_{2} \xrightarrow{a_{2}} X_{3} \rightarrow \cdots
$$

$\left|X_{i}\right| \leq k$.
Eve wins a play if $\left(a_{1} a_{2} \ldots \in \mathcal{L}(\mathcal{A}) \Rightarrow\right.$ the sequence $X_{0} X_{1} X_{2} \ldots$ contains an accepting run of \mathcal{A}).
If Eve has a winning strategy then we say width $(\mathcal{A}) \leq k$.

- An automaton being GFG is equivalent to having width 1 .

k-Subset Construction

k-Subset Construction

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
\mathcal{A}_{k} be the subset construction where size of each set is bounded by ' k '.

k-Subset Construction

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
\mathcal{A}_{k} be the subset construction where size of each set is bounded by ' k '.
$\mathcal{A}_{k}=\left(Q_{k}, \Sigma,\left\{q_{0}\right\}, \Delta^{\prime}, F^{\prime}\right)$, where

- Δ^{\prime} :

, where $\left|X_{i}\right| \leq k ;$ and $X_{i} \subseteq \Delta(X, a)$

k-Subset Construction

$\mathcal{A}=\left(Q, \Sigma, q_{0}, \Delta, F\right)$ be a NFA.
\mathcal{A}_{k} be the subset construction where size of each set is bounded by ' k '.
$\mathcal{A}_{k}=\left(Q_{k}, \Sigma,\left\{q_{0}\right\}, \Delta^{\prime}, F^{\prime}\right)$, where

- Δ^{\prime} :

, where $\left|X_{i}\right| \leq k ;$ and $X_{i} \subseteq \Delta(X, a)$
- \mathcal{A} has width $\leq \mathbf{k}$ iff \mathcal{A}_{k} is GFG.

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ is DBP.
- Checking GFGness of a NFA is in P.
- Checking if width $(\mathcal{A}) \leq k$ is PSPACE-hard and in EXPTIME.

Some Results...

On finite words,

- \mathcal{A} is $\mathrm{GFG} \Rightarrow \mathcal{A}$ is DBP.
- Checking GFGness of a NFA is in P.
- Checking if width $(\mathcal{A}) \leq \mathrm{k}$ is PSPACE-hard and in EXPTIME. Hardness Proof : Reduction from "Universality problem for NFA".

Determinization

- NFA \rightarrow DFA :

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG.

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. Yes

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. \mathcal{A} is DBP, hence determinize \mathcal{A}

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. No

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. No We check if \mathcal{A}_{2} is GFG.

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. No We check if \mathcal{A}_{2} is GFG. Yes

Determinization

- NFA \rightarrow DFA:

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. \mathcal{A}_{2} is DBP, hence determinize \mathcal{A}_{2}

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. No We check if \mathcal{A}_{2} is GFG. No

Determinization

- NFA \rightarrow DFA :

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. No
In the worst case, we reach \mathcal{A}_{n} and do the whole subset construction.

Some Results...

On infinite words, if the acceptance condition is Co-Büchi condition,

- GFG automata are not necessarily DBP.
- GFG automata are useful for synthesis and other purposes.
- In some cases, GFG automata are exponentially smaller than any equivalent deterministic automata.

Some Results...

On infinite words, if the acceptance condition is Co-Büchi condition,

- GFG automata are not necessarily DBP.
- GFG automata are useful for synthesis and other purposes.
- In some cases, GFG automata are exponentially smaller than any equivalent deterministic automata.
- Checking DBPness is NP-complete.
- Checking GFGness is in P. [Kuperberg, Skrzypczak '15]
- We can find the width almost in the same way as we did for NFA.

Co-Büchi Case

Determinization : Breakpoint Construction

Co-Büchi Case

Determinization : Breakpoint Construction \mathcal{A}_{k} : Keep track of sets of size atmost k (\mathbf{k}-Breakpoint Construction)

Co-Büchi Case

Determinization : Breakpoint Construction

\mathcal{A}_{k} : Keep track of sets of size atmost k (\mathbf{k}-Breakpoint Construction)

- \mathcal{A} has width $\leq \mathbf{k}$ iff \mathcal{A}_{k} is GFG.

Calculate Width

We check if \mathcal{A} is GFG.

Calculate Width

We check if \mathcal{A} is GFG. Yes

Calculate Width

We check if \mathcal{A} is GFG. Width $=1$

Calculate Width

We check if \mathcal{A} is GFG. No

Calculate Width

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG.

Calculate Width

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. Yes

Calculate Width

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. Width $=2$

Calculate Width

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. No

Calculate Width

We check if \mathcal{A} is GFG. No
We check if \mathcal{A}_{2} is GFG. No

In the worst case, we reach \mathcal{A}_{n} and do the whole breakpoint construction. Width $=n$

Büchi Case

For Büchi? : Similar ; k-Safra

Büchi Case

For Büchi?: Similar ; k-Safra :

- Only build Safra trees labelled by at most k states.

Büchi Case

For Büchi? : Similar ; k-Safra :

- Only build Safra trees labelled by at most k states.
- \mathcal{A} has width $\leq \mathbf{k}$ iff \mathcal{A}_{k} is GFG.

Summary

- Iterative construction to translate nondeterministic automata to GFG.
- Over finite words, GFG is equivalent to DBP; hence we get DFA.
- For Co-Büchi, testing GFG is easier than checking DBPness.
- Can extend for Büchi acceptance condition also.

Concluding Remarks

- Future Work :
- Complexity of GFGness checking for arbitrary Parity/Rabin conditions (essential bottleneck in our algorithm with Büchi input).
- Understanding the link between width and structure of the automaton.
- Implementing this approach and testing it against classical determinization/inclusion software.

Questions?

Thank You

