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Ad-hoc Networks

Devices (nodes) communicate wirelessly without a central access point.

Any device can send message to its neighbours.

Parameterized framework: the network should satisfy a given property
for any number of devices.
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Broadcast Networks

Broadcast Protocol

Finite state system whose transitions are labelled with:

broadcast of messages - !a

reception of messages - ?a [DSZ’10]

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi
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Semantics

Configuration: nodes (devices), labellings of nodes and edges.

Every node follows the (same) protocol.

Initial configuration: every node is in initial state.

Nodes can send (yellow) messages to their neighbours (gray).
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Semantics

Two possible semantics

Static: edges in the configuration graph is unchanged.

Reconfigurable: edges may change arbitrarily at every step.

q0

q0

q0

q0

q0 !a−→ q1

q0

q0

q1

q0

!b1−→ q2

r1

⊥

q1

q0

· · ·

Alert: Number of nodes does not change along an execution.
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Reachability

Reachability problem

Given a broadcast protocol P and target state , does there exist γ0 →∗ γ
such that γ0 is initial and γ contains .

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi
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q0
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q0

!b2−→r
q4

q0
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Reachability
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such that γ0 is initial and γ contains .

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi

REACH = set of all reachable states.

Goal: Decide Reachability.

- Undecidable in static semantics. [DSZ’10]

- PTIME algorithm for computing REACH in reconfigurable semantics.
[DSTZ’12] (next)
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Saturation Algorithm

Recall: q ∈ REACH ⇐⇒ ∃γ0 →∗ γ s.t. q is in γ.
Computing REACH: example

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi

REACH = {}. [DSTZ’12]

Correctness proof idea: duplicate the witness of iteration i .
Final witness has size exponential.
What about a minimum size witness?
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Correctness - idea

iteration i → i + 1 : q
!a−→ q′

...
···→

q

...

...
···→

q

...

!a−→
q

...

q′

...

Duplicate the execution and new node takes the transition.
Similar for reception.

[DSTZ’12]
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Saturation Algorithm

Recall: q ∈ REACH ⇐⇒ ∃γ0 →∗ γ s.t. q is in γ.
Computing REACH: example
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Some measures

Cutoff

Minimal number of nodes to reach .

Covering length

Length of a minimal execution to reach .

Our goal: given a protocol, find the cutoff and covering length.
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Copycat property

Duplication not needed - one extra node is enough to follow a certain node.

...
···→

q

...

q

The new node exactly follows the old node, thanks to reconfiguration.
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Copycat property - Example

q0

q0

q0

q0

!a−→r

q1

q0

q0

q1

!b1−→r
q2

r1

q0

q1 !b1−→r

q2

r1

q0

q2

Introduce the new node (which will follow the second node).
New node receives message as old node.
Sending is simulated in two steps - old node sends as before, then
disconnect the new node and new node sends the same message.
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Saturation Algorithm - revisited

iteration i → i + 1 : q
!a−→ q′

...
···→

q

...

q

!a−→
q

...

q′

Duplicate the “required” node and new node takes the transition.
Similar for reception; with two new nodes.
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Consequence on cutoff and covering length

Results

A minimal witness has size at most O(n) [more precisely, 2n].

A minimal witness has length at most O(n2).

Matching lower bounds (example : a family of protocols).
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Lossy Networks

Message can be lost in the network.

Reconfigurable semantics: lossy semantics equivalent to non-lossy
semantics.

Focus on static topology (edges remain the same throughout).

Two possible semantics:

Loss on reception. [DSZ’12]
Loss on sending. [This work]

- Goal: compute REACH.
- What about cutoff, covering length?
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Loss on reception

Consider qs
!a−→ q′s ; qr

?a−→ q′r .

qr

qr qs

...

q′s

...

q′s

...

q′s

...

q′s

...
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Loss on sending

Consider qs
!a−→ q′s ; qr

?a−→ q′r .
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Two possible semantics:

Loss on reception. [DSZ’12] (equiv. to reconfigurable non-lossy
semantics)
Loss on sending. [This work]

- Goal: compute REACH.
- What about cutoff, covering length?

Anirban majumdar@lsv.fr Broadcast networks 18 / 26



Copycat property - Lossy net

One can copy any node by an extra node.

...
···→

q

...

q

The new node exactly follows the old node.

Alert: static topology.
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Copycat property - Lossy net - Example

q0

q1

r1

q1

!b1−→l
lost

!b1−→l
lost

q2

r1

q0

q2

!a−→l

q3

r1

q0

!b2−→l

q3 !b2−→l
lost

q4

⊥

q4

Note - Static topology.

Introduce new node; it has the same connections as old node.
Lossy transition is taken by both nodes.
New node receives message as old node.
Sending is simulated in two steps - old node sends as before, and new node
sends a lossy message.
Note - all messages by new node are lossy.
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Saturation Algorithm - Lossy net

iteration i → i + 1 : q
!a−→ q′

...
···→

q

...

q

!a−→
q

...

q′

Alert: static topology
Idea: keep a main copy for each Reachable state.
The main copy is untouched in future iterations.

Anirban majumdar@lsv.fr Broadcast networks 21 / 26



Saturation Algorithm - Lossy net

iteration i → i + 1 : q
!a−→ q′

...
···→

q

...

q

!a−→
q

...

q′

Alert: static topology

Idea: keep a main copy for each Reachable state.
The main copy is untouched in future iterations.

Anirban majumdar@lsv.fr Broadcast networks 21 / 26



Saturation Algorithm - Lossy net

iteration i → i + 1 : q
!a−→ q′

...
···→

q

...

q

!a−→
q

...

q′

Alert: static topology
Idea: keep a main copy for each Reachable state.
The main copy is untouched in future iterations.

Anirban majumdar@lsv.fr Broadcast networks 21 / 26



Saturation Algorithm - Lossy net - Example

q0 q1q2q3 q4
!a?a!b ?b

S0

S1

S2

S3

S4

q0

q0

q0

q0

q0

q0

q0

q1

×

q2

q2

q2

q0

q2

q2

q1

q3

×

q4

!a

lost

!a

?a

?a

?a

!a

lost

!b

lost

!b

?b
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Complexity measures in lossy semantics

Results

REACH is same as in reconfigurable non-lossy semantics.

Similar bounds for cutoff [O(n)] and covering length [O(n2)].
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Reconfiguration is more succinct

Reconfigurable semantics needs less nodes than lossy semantics:

q0 q1 q2 q3 q4 · · · q2n

r1

⊥

r2 · · ·

!a

?a !b1 ?a !b2 ?a !bn

?b1 ?b2 ?bn

?bi

One needs 3 nodes in reconfigurable semantics to reach .

q0

q0

q0

!a−→r
q1

q0

q0

!b1−→r
q2

r1

q0

!a−→r
q3

r1

q0

!b2−→r
· · · !bn−→r

q2n

q0

But, one needs at least O(n) many nodes in lossy sematics.
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Finding minimal covering execution

Cutoff is at most linear.

What about exact size of a minimal witness?

MinCover
Input: A broadcast protocol P, target state , and k ∈ N.
Output: Yes iff there exists a covering execution with k many nodes.

- NP-complete.

- Proof of hardness: reduction from set-cover.

s1 s2 . . . sm

q1 q2 q3 · · · qn

!a11, !a12, · · · !a21, !a22, · · · !am1, !am2, · · ·

?a1 ?a2 ?a3 ?an

The instance has a cover of size k if and only if there is a witness execution
of size k+1.
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Conclusion/Future

REACH is same for reconfigurable non-lossy semantics and static lossy
semantics.

Cutoff is at most O(n) (both semantics).

And covering length at most O(n2) (both semantics).

Similar lower bounds as well (both semantics).

But reconfigurable non-lossy semantics is more succinct.

Finding minimal covering execution NP-complete (both semantics).

What is the tradeoff between the size and length of an execution?

What about probabilistic message losses?

Thank You
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