Playing with Repeating Values in Datawords

Anirban Majumdar
M.Sc. Thesis
Supervised by: M Praveen
Chennai Mathematical Institute
June 14, 2018

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
(4) Undecidability results
(5) Conclusion

6 Future work

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
4) Undecidability results
(5) Conclusion
(6) Future work

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.

$$
G(\text { coffee button } \Rightarrow X(\text { coffee produced }))
$$

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.

$$
G(\text { coffee button } \Rightarrow X(\text { coffee produced }))
$$

- Whenever stop button is pressed, coffee is not produced in the next step.

$$
\mathrm{G}(\text { stop button } \Rightarrow \mathrm{X}(\neg \text { coffee produced }))
$$

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.

$$
G(\text { coffee button } \Rightarrow X(\text { coffee produced }))
$$

- Whenever stop button is pressed, coffee is not produced in the next step.

$$
\mathrm{G}(\text { stop button } \Rightarrow \mathrm{X}(\neg \text { coffee produced }))
$$

- Specifications satisfiable:

Realizability of specifications

Coffee button and stop button are not under the control of the system.

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button stop button

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button
stop button
coffee produced

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button * stop button *
coffee produced

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button * stop button *
coffee produced *

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

$$
\begin{array}{ccc}
\text { coffee button } & * & * \\
\text { stop button } & * & * \\
\text { coffee produced } & * &
\end{array}
$$

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$
stop button	$*$	$*$
coffee produced	$*$	$*$

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$
stop button	$*$	$*$	$*$
coffee produced	$*$	$*$	

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$
stop button	$*$	$*$
coffee produced	$*$	$*$
	$*$	

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\ldots
coffee produced	$*$	$*$	$*$	

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\ldots
coffee produced	$*$	$*$	$*$	\ldots

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\cdots
coffee produced	$*$	$*$	$*$	\ldots

The realizability problem:

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\ldots
coffee produced	$*$	$*$	$*$	\ldots

The realizability problem:
Input: A formula, a partition of the variables.

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\ldots
coffee produced	$*$	$*$	$*$	\ldots

The realizability problem:
Input: A formula, a partition of the variables.
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the system.
Two-player game: environment and system.

coffee button	$*$	$*$	$*$	\ldots
stop button	$*$	$*$	$*$	\ldots
coffee produced	$*$	$*$	$*$	\ldots

No winning strategy for system in the example.
The realizability problem:
Input: A formula, a partition of the variables.
Question: Does the system have a winning strategy?

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
(4) Undecidability results
(5) Conclusion
(6) Future work

Introduction of LRV

- Language over finite alphabet:
- NFA, Buchi Automata.
- LTL.

Introduction of LRV

- Language over finite alphabet:
- NFA, Buchi Automata.
- LTL.
- Language over infinite alphabet:

Introduction of LRV

- Language over finite alphabet:
- NFA, Buchi Automata.
- LTL.
- Language over infinite alphabet:
- Register Automata, Data Automata.

Introduction of LRV

- Language over finite alphabet:
- NFA, Buchi Automata.
- LTL.
- Language over infinite alphabet:
- Register Automata, Data Automata.
- LRV.

Model, syntax, semantics

LRV: Extension of LTL

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
\phi::= & q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

$$
x: \quad d_{1} \quad * \quad * \quad \cdots \quad * \quad * \cdots
$$

$$
y: \quad d_{2} \quad * \quad * \quad \cdots \quad * \quad * \cdots
$$

$$
q: \quad \top \perp \quad\rceil \cdots \quad * \quad * \cdots
$$

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
\phi::= & q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

$$
\left.x: \begin{array}{lllllll}
& d_{1} & d & * & \cdots & * & *
\end{array}\right]
$$

$$
y: \quad d_{2} \quad * \quad d \quad \cdots \quad d^{\prime} \quad d \cdots
$$

$$
q: \quad \top \perp \quad\rceil \cdots \quad * \quad * \cdots
$$

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

\vDash									$=$				
$x:$	d_{1}	d	$*$	\cdots	$*$	$*$	\cdots						
$y:$	d_{2}	$*$	d	\cdots	d^{\prime}	d	\cdots						
$q:$	\top	\perp	\top	\cdots	$*$	$*$	\cdots						

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

												\models				$\models \phi$
$x:$	d_{1}	d	$*$	\cdots	$*$	$*$	\cdots									
$y:$	d_{2}	$*$	d	\cdots	d^{\prime}	d	\cdots									
$q:$	\top	\perp	\top	\cdots	$*$	$*$	\cdots									

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

Model, syntax, semantics

LRV: Extension of LTL

$$
\begin{aligned}
\phi::= & q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

												\models
$x:$	d_{1}	d	$*$	\cdots	$*$	$*$	\cdots					
$y:$	d_{2}	$*$	d	\cdots	d^{\prime}	d	\cdots					
$q:$	\top	\perp	\top	\cdots	$*$	$*$	\cdots					

Realizability of LRV formulas

- Realizability of propositional LTL: parity games on finite graphs.

Realizability of LRV formulas

- Realizability of propositional LTL: parity games on finite graphs.
- Satisfiability of LRV: reachability in VASS [Demri, D'Souza, Gascon 2007].

Realizability of LRV formulas

- Realizability of propositional LTL: parity games on finite graphs.
- Satisfiability of LRV: reachability in VASS [Demri, D'Souza, Gascon 2007].
- Realizability of LRV: parity games on VASS.

Parity games on VASS

- States partitioned into system and environment.

Parity games on VASS

- States partitioned into system and environment.
- Finite set of counters.

Parity games on VASS

- States partitioned into system and environment.
- Finite set of counters.
- Transitions increments or decrements a counter or does not effect any counter.

Parity games on VASS

- States partitioned into system and environment.
- Finite set of counters.
- Transitions increments or decrements a counter or does not effect any counter.
- A player can choose a decrementing transition only if the counter has non-zero value.

Parity games on VASS

- States partitioned into system and environment.
- Finite set of counters.
- Transitions increments or decrements a counter or does not effect any counter.
- A player can choose a decrementing transition only if the counter has non-zero value.
- System wins an infinite play if it satisfies the parity condition.

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment

4 Undecidability results
(5) Conclusion
(6) Future work

Asymmetry in games on VASS

- [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.
- [Abdulla, Bouajjani, D'orso 2008] One of the players has lossy transitions. Safety games are decidable.
- [Brázdil, Jančar, Kuc̆era 2010] Transitions can add arbitrarily large numbers. Decidable to check if one of the players can make some counter zero.
- [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can only increment; the other player cannot test for zero.
- [Chatterjee, Randour, Raskin 2013] Energy games: if a player makes a counter to go below zero, the other player wins immediately. One of the players has to additionally satisfy a parity condition.

Asymmetry in games on VASS

- [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.
- [Abdulla, Bouajjani, D'orso 2008] One of the players has lossy transitions. Safety games are decidable.
- [Brázdil, Jančar, Kučera 2010] Transitions can add arbitrarily large numbers. Decidable to check if one of the players can make some counter zero.
- [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can only increment; the other player cannot test for zero.
- [Chatterjee, Randour, Raskin 2013] Energy games: if a player makes a counter to go below zero, the other player wins immediately. One of the players has to additionally satisfy a parity condition.
- [Abdulla, Mayr, Sangnier, Sproston 2013] Single-sided VASS games: Environment cannot change counter value.

Single-sided LRV games

- Environment player has only Boolean variables.

Single-sided LRV games and More Resrtictions

- Environment player has only Boolean variables.
- No nested formulas: only $x \approx\langle T ?\rangle^{-1} y$.

Single-sided LRV games and More Resrtictions

- Environment player has only Boolean variables.
- No nested formulas: only $x \approx\langle T ?\rangle^{-1} y$.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.

Single-sided LRV games and More Resrtictions

- Environment player has only Boolean variables.
- No nested formulas: only $x \approx\langle T ?\rangle^{-1} y$.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability can be reduced to single-sided VASS games: Decidable.

Single-sided LRV games and More Resrtictions

- Environment player has only Boolean variables.
- No nested formulas: only $x \approx\langle T ?\rangle^{-1} y$.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability can be reduced to single-sided VASS games: Decidable. [Diego Figueira, M Praveen 2018].

Single-sided LRV games and More Resrtictions

- Environment player has only Boolean variables.
- Nested formulas: $x \approx\langle\phi ?\rangle^{-1} y$; where ϕ depends only on past.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability can be reduced to single-sided VASS games: Decidable. [This Thesis]

Single-sided LRV games - symbolic models

Concrete model

\[

\]

Single-sided LRV games - symbolic models

Concrete model

\[

\]

Symbolic model
\square
\square
\square
\square

Single-sided LRV games - symbolic models

Concrete model

\[

\]

Symbolic model

Single-sided LRV games - symbolic models

Concrete model

\[

\]

Symbolic model

Single-sided LRV games - symbolic models

Concrete model

\[

\]

Symbolic model
Extra information about past positions having same data value
\square

Symbolic models

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x
\end{aligned}
$$

Symbolic models

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx X^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x \\
& \begin{array}{l|l|llll}
& x \approx y & x \approx y & \approx \delta^{-1} y \\
x & x & x \approx y & \quad z \approx \diamond^{-1} x
\end{array}
\end{aligned}
$$

Symbolic models

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx X^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x \\
& \begin{array}{l|l|llll}
& & & & z \approx \nabla^{-1} y \\
x \approx y & x \approx y & x \approx y & \cdots & x \approx y & x \approx \nabla^{-1} x
\end{array} \\
& \text { increment } C_{\{x, y\}}
\end{aligned}
$$

Symbolic models

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& x \approx X^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x \\
& \begin{array}{l|l|llll}
& & & & z \approx \diamond^{-1} y \\
x \approx y & x \approx y & x \approx y & \cdots & x \approx y & x \approx \diamond^{-1} x
\end{array} \\
& \text { increment } C_{\{x, y\}} \\
& \text { decrement } C_{\{x\}}
\end{aligned}
$$

Symbolic models

$$
\begin{aligned}
& \phi::=q|\neg \phi| \phi \vee \phi|\mathrm{X} \phi| \phi \mathrm{U} \phi\left|\mathrm{X}^{-1} \phi\right| \phi \mathrm{S} \phi \mid \\
& \quad x \approx \mathrm{X}^{1} y|x \approx\langle\phi ?\rangle y| x \not \approx\langle\phi ?\rangle y\left|y \approx\langle\phi ?\rangle^{-1} x\right| y \not \approx\langle\phi ?\rangle^{-1} x \\
& \begin{array}{rr}
x \approx y & z \approx\langle\phi ?\rangle^{-1} y \\
\begin{array}{rl}
x \approx y & x \approx y \\
\text { increment } C_{\{x, y\}} \\
\text { increment } I_{x}
\end{array} & x \approx y \\
\text { decrement } C_{\{x\}}
\end{array} \\
& \begin{array}{l}
\text { decrement } I_{z}
\end{array}
\end{aligned}
$$

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
(4) Undecidability results
(5) Conclusion
(6) Future work

Restrictions to get decidability

- No nested formulas: only $x \approx\langle T ?\rangle^{-1} y$.
- Environment player has only Boolean variables.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability: Decidable.

Restrictions to get decidability

- Nested formulas: $x \approx\langle\phi\rangle^{-1} y$; where ϕ depends only on past.
- Environment player has only Boolean variables.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability: Decidable. [This thesis]

Not decidable anymore

- Nested formulas: $x \approx\langle\phi ?\rangle^{-1} y$.
- Environment player has only Boolean variables.
- No future obligations: $x \approx\langle T$? $\rangle y$ not allowed.
- Realizability: Undecidable. [This thesis]

Lossy Counter Machines

- LCM: Counter Machine + Lossiness.

Lossy Counter Machines

- LCM: Counter Machine + Lossiness.
- Counter Machine: Transitions can either increment, decrement or test for value zero of a counter.

Lossy Counter Machines

- LCM: Counter Machine + Lossiness.
- Counter Machine: Transitions can either increment, decrement or test for value zero of a counter.
- Lossiness: Sum of counter values may decrease in every transition.

Lossy Counter Machines

- LCM: Counter Machine + Lossiness.
- Counter Machine: Transitions can either increment, decrement or test for value zero of a counter.
- Lossiness: Sum of counter values may decrease in every transition.
- Reset Lossiness: At any zero test transition, the corresponding counter value can immediately become zero.

Lossy Counter Machines

- LCM: Counter Machine + Lossiness.
- Counter Machine: Transitions can either increment, decrement or test for value zero of a counter.
- Lossiness: Sum of counter values may decrease in every transition.
- Reset Lossiness: At any zero test transition, the corresponding counter value can immediately become zero.
- Checking the existense of a configuration from which there is an infinite run in a 5-counter LCM: Undecidable. [Richard Mayr, 1998]

Simulating counter machines

Simulating counter machines

b

Simulating counter machines

Increment

Simulating counter machines

Increment

- d should be a new data value.

Simulating counter machines

Zero test

Simulating counter machines

Zero test

- Counter can immediately goes to zero; wlog, d is a new data value.

Simulating counter machines

Decrement

Simulating counter machines

Decrement

- d must repeat in the past in an incrementing position and no zero test in between.

Simulating counter machines

Decrement

- d must repeat in the past in an incrementing position and no zero test in between.
- If not, second player sets b to false.

Simulating counter machines

Decrement

- d must repeat in the past in an incrementing position and no zero test in between.
- If not, second player sets b to false.
- System should justify he is not cheating: can be captured by a formula in this fragment of LRV.

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
(4) Undecidability results
(5) Conclusion
(6) Future work

Conclusion

- LRV Realizability.

Conclusion

- LRV Realizability.
- Undecidable in the general case.

Conclusion

- LRV Realizability.
- Undecidable in the general case.
- Restrictions to get decidability: single-sided game, no future obligations, no nested formula.

Conclusion

- LRV Realizability.
- Undecidable in the general case.
- Restrictions to get decidability: single-sided game, no future obligations, no nested formula.
- Single-sided, no future obligations, nested formulas depends on past: Decidable.

Conclusion

- LRV Realizability.
- Undecidable in the general case.
- Restrictions to get decidability: single-sided game, no future obligations, no nested formula.
- Single-sided, no future obligations, nested formulas depends on past: Decidable.
- Single-sided, no future obligations, nesting is allowed: Undecidable.

Outline

(1) Realizability games
(2) Logic of repeating values
(3) Decidable fragment
(4) Undecidability results
(5) Conclusion
(6) Future work

Future work

- Tight bound on nesting.
- Complexity bounds.
- Synthesizing winning strategies.
- Other decidable restrictions of VASS games.

Future work

- Tight bound on nesting.
- Complexity bounds.
- Synthesizing winning strategies.
- Other decidable restrictions of VASS games.

Thank you

