Verification and Synthesis of Parameterized Concurrent Systems

Anirban Majumdar

Supervised by: Patricia Bouyer, Nathalie Bertrand

September 30, 2021

Part - II

Parameterized Concurrent Games

- Finite set of actions: $\Sigma = \{a, b\}$.
- The game proceeds as follows:

- The game proceeds as follows:
 - Game starts at initial vertex.

- The game proceeds as follows:
 - Same starts at initial vertex.
 - Players choose actions simultaneously.
 - Solution Next vertex is determined by the chosen actions.

- The game proceeds as follows:
 - Same starts at initial vertex.
 - Players choose actions simultaneously.
 - Solution Next vertex is determined by the chosen actions.

- The game proceeds as follows:
 - Same starts at initial vertex.
 - Players choose actions simultaneously.
 - Solution Next vertex is determined by the chosen actions.

Finite set of actions: $\Sigma = \{a, b\}$.

The game proceeds as follows:

- Game starts at initial vertex.
- Players choose actions simultaneously.
- Solution Next vertex is determined by the chosen actions.

Player 1 needs to win against all strategies of player 2.

Finite set of actions: $\Sigma = \{a, b\}$.

The game proceeds as follows:

- Game starts at initial vertex.
- Players choose actions simultaneously.
- Solution Next vertex is determined by the chosen actions.

Player 1 needs to win against all strategies of player 2.

Examples of winning objectives: Reachability, Safety...

[Alfaro, Henzinger, Kupferman '07]

Hide-or-run example

Player 1 wants to reach home safely when Player 2 wants to throw a snowball at him.

No player has a winning strategy.

- Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:

- Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.

- Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.
 - Adversary fixes k the number of players (unknown to players).

- \triangleright Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.
 - Adversary fixes k the number of players (unknown to players).
 - Players choose actions simultaneously: they form a word $w = a_1 a_2 \dots a_k$.

- \triangleright Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.
 - Adversary fixes k the number of players (unknown to players).
 - Players choose actions simultaneously: they form a word $w = a_1 a_2 \dots a_k$.
 - Next vertex is such that $w \in L_i$ (non-determinism is resolved by adversary).

- \triangleright Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.
 - Adversary fixes k the number of players (unknown to players).
 - Players choose actions simultaneously: they form a word $w = a_1 a_2 \dots a_k$.
 - Next vertex is such that $w \in L_i$ (non-determinism is resolved by adversary).

- \triangleright Finite set of actions: Σ .
- $\triangleright L_i \subseteq \Sigma^*$.
- Number of players is unknown.
- The game proceeds as follows:
 - Game starts at initial vertex.
 - Adversary fixes k the number of players (unknown to players).
 - Players choose actions simultaneously: they form a word $w = a_1 a_2 \dots a_k$.
 - Next vertex is such that $w \in L_i$ (non-determinism is resolved by adversary).

A distinguished player trying to achieve a goal against arbitrary number of opponents.

(Example: Server-clients)

(Example: Fleet of drones)

A distinguished player trying to achieve a goal against arbitrary number of opponents.

(Example: Server-clients)

Arbitrary number of players trying to achieve a common goal as a coalition.

(Example: Fleet of drones)

Strategy of player *i* is $\sigma_i : V^+ \to \Sigma$.

- Strategy of player *i* is $\sigma_i : V^+ \to \Sigma$.
- A coalition strategy is $\tilde{\sigma} = \langle \sigma_1, \sigma_2, \ldots \rangle$. Equivalently, $\tilde{\sigma} : V^+ \to \Sigma^{\omega}$.

- Strategy of player *i* is $\sigma_i : V^+ \to \Sigma$.
- ▷ A coalition strategy is $\tilde{\sigma} = \langle \sigma_1, \sigma_2, \ldots \rangle$. Equivalently, $\tilde{\sigma} : V^+ \to \Sigma^{\omega}$.
- \triangleright $Out^k(v_0, \tilde{\sigma}) =$ set of plays induced by $\tilde{\sigma}$ from v_0 with *k* players.

- Strategy of player *i* is $\sigma_i : V^+ \to \Sigma$.
- ▷ A coalition strategy is $\tilde{\sigma} = \langle \sigma_1, \sigma_2, \ldots \rangle$. Equivalently, $\tilde{\sigma} : V^+ \to \Sigma^{\omega}$.
- \triangleright $Out^k(v_0, \tilde{\sigma}) =$ set of plays induced by $\tilde{\sigma}$ from v_0 with *k* players.

The coalition wins if they can keep the play within a safe set of vertices.

- Strategy of player *i* is $\sigma_i : V^+ \to \Sigma$.
- ▷ A coalition strategy is $\tilde{\sigma} = \langle \sigma_1, \sigma_2, \ldots \rangle$. Equivalently, $\tilde{\sigma} : V^+ \to \Sigma^{\omega}$.
- \triangleright $Out^k(v_0, \tilde{\sigma}) =$ set of plays induced by $\tilde{\sigma}$ from v_0 with *k* players.

The coalition wins if they can keep the play within a safe set of vertices.

Input: Arena \mathscr{A} , initial vertex $v_0 \in V$ and set of safe vertices S.

Output: Yes iff $\exists \widetilde{\sigma} \, . \, \forall k \, . \, Out^k(v_0, \widetilde{\sigma}) \subseteq S^{\omega}$.

- $\stackrel{\scriptstyle{\bullet}}{=} \Sigma = \{a, b\} \,.$
- Solutions Unspecified transitions lead to a losing vertex \perp .
- Coalition needs to stay within the safe vertices.

- $\Im \Sigma = \{a, b\}.$
- Solutions Unspecified transitions lead to a losing vertex \perp .
- Coalition needs to stay within the safe vertices.

A coalition winning strategy:

$$\widetilde{\sigma}(v_0) = aba^{\omega}; \ \widetilde{\sigma}(v_0v_2) = a^{\omega};$$

$$\widetilde{\sigma}(v_0v_1) = a^{\omega}; \ \widetilde{\sigma}(v_0v_2v_1) = b^{\omega}.$$

- $\Im \Sigma = \{a, b\}.$
- Solutions Unspecified transitions lead to a losing vertex \perp .
- Coalition needs to stay within the safe vertices.
- A coalition winning strategy:

$$\begin{split} \widetilde{\sigma}(v_0) &= aba^{\omega}; \ \widetilde{\sigma}(v_0v_2) = a^{\omega}; \\ \widetilde{\sigma}(v_0v_1) &= a^{\omega}; \ \widetilde{\sigma}(v_0v_2v_1) = b^{\omega}. \end{split}$$

At v_0 , coalition plays aba^{ω} , since any other choice leads to \perp for some *k*.

- $\Im \Sigma = \{a, b\}.$
- Solution Unspecified transitions lead to a losing vertex \perp .
- Coalition needs to stay within the safe vertices.
- A coalition winning strategy:

$$\begin{split} \widetilde{\sigma}(v_0) &= aba^{\omega}; \ \widetilde{\sigma}(v_0v_2) = a^{\omega}; \\ \widetilde{\sigma}(v_0v_1) &= a^{\omega}; \ \widetilde{\sigma}(v_0v_2v_1) = b^{\omega}. \end{split}$$

- At v_0 , coalition plays aba^{ω} , since any other choice leads to \perp for some *k*.
- At v_1 , if the history is $v_0v_2v_1$, the coalition infer there is only 1 player, hence they choose b^{ω} .

- $\stackrel{\scriptstyle {\scriptstyle \Downarrow}}{\scriptstyle {\scriptstyle \blacksquare}} \Sigma = \{a,b\} \,.$
- Solution Unspecified transitions lead to a losing vertex \perp .
- Coalition needs to stay within the safe vertices.

A coalition winning strategy:

$$\begin{split} \widetilde{\sigma}(v_0) &= aba^{\omega}; \ \widetilde{\sigma}(v_0v_2) = a^{\omega}; \\ \widetilde{\sigma}(v_0v_1) &= a^{\omega}; \ \widetilde{\sigma}(v_0v_2v_1) = b^{\omega}. \end{split}$$

- At v_0 , coalition plays aba^{ω} , since any other choice leads to \perp for some k.
- At v_1 , if the history is $v_0v_2v_1$, the coalition infer there is only 1 player, hence they choose b^{ω} .
- At v_1 , if the history is v_0v_1 , coalition infer there is at least 2 players, hence they choose a^{ω} .

 \triangleright Unfold arena \mathscr{A} to a finite tree.

Label nodes with corresponding vertices, and edges with languages.

b Unfold arena \mathscr{A} to a finite tree.

Label nodes with corresponding vertices, and edges with languages.

Terminate a branch if:

seither some label repeats in the same branch,

 $\frac{1}{2}$ or the label is not in *S*.

 \triangleright Unfold arena \mathscr{A} to a finite tree.

Label nodes with corresponding vertices, and edges with languages. Terminate a branch if:

either some label repeats in the same branch,

 $\frac{1}{2}$ or the label is not in *S*.

Intuitively, if a vertex repeats in \mathcal{A} , coalition may take the same strategy.

Figures safety in the first occurrence, then also for the later.

A coalition Strategy in the tree is a mapping $\tau : N_{int} \to \Sigma^{\omega}$.

▷ A coalition Strategy in the tree is a mapping $\tau : N_{int} \to \Sigma^{\omega}$.

The coalition wins if they can reach a safe leaf.

Froof idea: any history V^+ in \mathscr{A} uniquely maps to an internal node in \mathscr{T} .

Safe coalition problem reduces to existence of a winning coalition strategy in the finite tree unfolding.

EXPSPACE algorithm

 $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$

▷ A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$.

EXPSPACE algorithm

- $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$
- A coalition Strategy in \mathcal{T} is a mapping $\tau: N_{int} \to \Sigma^{\omega}$.
 - Figure Equivalently, $\tau \in (\Sigma^{\omega})^m$.

EXPSPACE algorithm

- ▶ A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$.
 - Figure Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.

EXPSPACE algorithm

- A coalition Strategy in \mathcal{T} is a mapping $\tau: N_{int} \to \Sigma^{\omega}$.
 - Figure Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \$ runs automata on the edges in parallel.

EXPSPACE algorithm

- ▶ A coalition Strategy in 𝔅 is a mapping τ : N_{int} → Σ^ω.
 ♣ Equivalently, τ ∈ (Σ^ω)^m.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.

EXPSPACE algorithm

- ▶ A coalition Strategy in 𝔅 is a mapping τ : N_{int} → Σ^ω.
 ♣ Equivalently, τ ∈ (Σ^ω)^m.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \$ runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - searcepting if the corresponding branches reach safe leaves.

EXPSPACE algorithm

- ▶ A coalition Strategy in 𝔅 is a mapping τ : N_{int} → Σ^ω.
 ♣ Equivalently, τ ∈ (Σ^ω)^m.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - solutions are accepting if the corresponding branches reach safe leaves.
- Accepts words corresponding to winning strategies.

EXPSPACE algorithm

 $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$

- A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$. Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - secepting if the corresponding branches reach safe leaves.

Accepts words corresponding to winning strategies.

Coalition has a winning strategy in ${\mathcal T}$

 $\mathscr{L}(\mathscr{B}) \neq \emptyset$

EXPSPACE algorithm

 $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$

- A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$. Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - solutions are accepting if the corresponding branches reach safe leaves.

Accepts words corresponding to winning strategies.

EXPSPACE algorithm

 $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$

- A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$. Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - solutions are accepting if the corresponding branches reach safe leaves.

Accepts words corresponding to winning strategies.

EXPSPACE algorithm

 $m = \text{number of internal nodes in } \mathcal{T}; \ m = O(2^{|V|}).$ $r = \text{number of edges in } \mathcal{T}; \ r = O(2^{|V|}).$

- A coalition Strategy in \mathcal{T} is a mapping $\tau : N_{int} \to \Sigma^{\omega}$. Equivalently, $\tau \in (\Sigma^{\omega})^m$.
 - Figure Equivalently, $\tau \in (\Sigma^m)^{\omega}$.
- \triangleright Construct safety automaton \mathscr{B} over alphabet Σ^m :
 - \clubsuit runs automata on the edges in parallel.
 - \clubsuit a (global) state is an *r* tuple of (local) states.
 - a (global) state corresponds to different branches.
 - solutions are accepting if the corresponding branches reach safe leaves.

Accepts words corresponding to winning strategies.

Coalition has a winning strategy in
$$\mathcal{T}$$
 $\mathcal{L}(\mathcal{B}) \neq \emptyset$
 $|\mathcal{B}| = O(2^{2^{|V|}}).$

Safe coalition problem is in **EXPSPACE** and PSPACE-hard.

 n_0 v_0 a*ba* a^*ba^* v_0 (v_2) n₂ × Σ^+ $(\underline{1})$ **n**₃ $\left(v_{1}\right)$ $\begin{pmatrix} v_0 \end{pmatrix}$ h-100 $(\hat{\mathbf{I}})$ $\begin{pmatrix} v_0 \end{pmatrix}$ a a *a*ba** : b p_0 a *a* : $\bullet (q_1)$ (q_0) Σ Σ^+ : r_0 *s*₁ $b \lor aa^+$: *s*₀ (s_3) a

 n_0 v_0 x, b0x a^*ba^* (v_0) (v_2) n₂ Ň Σ^+ $(\underline{1})$ n₃ $\left(v_{1}\right)$ $\begin{pmatrix} v_0 \end{pmatrix}$ n the $\langle \hat{\mathbf{I}} \rangle$ $\begin{pmatrix} v_0 \end{pmatrix}$ a a *a*ba** : b p_0 a *a* : $\bullet q_1$ (q_0) Σ Σ^+ : r_0 *s*₁ $b \lor aa^+$: *s*₀ (s_3) a

 n_0 v_0 **v*¢ p_1 a^*ba^* p_1 Х by ad v1 v_0 (v_2)) **n**₂ s_1 $b \\ a \\ \Sigma \\ b$ Σ^+ r_1 by and i *s*₃ v_0 n₃ $\left(v_{1}\right)$ $\begin{pmatrix} \bullet \\ \bot \end{pmatrix}$ $\begin{pmatrix} v_0 \end{pmatrix}$ b *a* p_0 p_1 a p_0 a a a \sum_{b} p_1 p_0 p_0 Σ Σ q_1 q_0 Х *a*ba** : b p_0 s_1 s_0 s_2 r_0 r_1 r_1 Х s_0 *s*₃ a $\bullet q_1$ *a* : (q_0) b Σ Σ^+ : $\begin{pmatrix} a \\ \Sigma \\ \Sigma \\ \Sigma \\ \Sigma \end{pmatrix}$ r_0 b Σ b p_1 p_1 p_1 p_1 Х × *s*₁ *s*₃ Х $b \lor aa^+$: *s*₀ r_1 r_1 *s*₃ X (S_3) a

 n_0 $\left(v_{0}\right)$ *⁰⁰* p_1 a^*ba^* p_1 Х by ad v1 v_0 $\left(v_{2}\right)$) **n**₂ s_1 $b \\ a \\ \Sigma \\ b$ Σ^+ r_1 *s*₃ v_0 (\mathbf{i}) n₃ $\left(v_{1}\right)$ by au $\begin{pmatrix} \bullet \\ \bot \end{pmatrix}$ $\begin{pmatrix} v_0 \end{pmatrix}$ b *a* p_0 p_0 p_1 $a \Sigma b$ a a a p_1 p_0 p_0 Σ Σ a $a \\ \Sigma \\ \Sigma \\ \Sigma$ q_1 q_0 Х *a*ba** : b p_0 s_1 s_0 s_2 r_0 r_1 r_1 Х s_0 *s*₃ a $\bullet q_1$ *a* : (q_0) b Σ Σ^+ : a r_0 r_1 b Σ b Σ Σ Σ p_1 p_1 p_1 p_1 Х × *s*₁ *s*₃ Х $b \lor aa^+$: *s*₀ r_1 r_1 *s*₃ × (s_3) ā

- ▶ If $\mathscr{L}(\mathscr{B}) \neq \emptyset$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.
- **Define:** $\lambda(n_i) = u_i \cdot v_i^{\omega}$
 - \Im λ is a winning strategy in \mathcal{T} .

- ▶ If $\mathscr{L}(\mathscr{B}) \neq \emptyset$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.
- **Define:** $\lambda(n_i) = u_i \cdot v_i^{\omega}$
 - \Im λ is a winning strategy in \mathcal{T} .

Transfer λ to a **winning** strategy $\tilde{\sigma}$ in \mathcal{G} :

▶ If $\mathscr{L}(\mathscr{B}) \neq \emptyset$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.

- **Define:** $\lambda(n_i) = u_i \cdot v_i^{\omega}$
 - \Im λ is a winning strategy in \mathcal{T} .

Transfer λ to a **winning** strategy $\tilde{\sigma}$ in \mathcal{G} :

- A history V^+ in \mathscr{A} uniquely maps to an internal node in \mathscr{T} by $h \mapsto \operatorname{zip}(h)$.
- Define $\widetilde{\sigma}$: $\widetilde{\sigma}(h) = \lambda(\operatorname{zip}(h))$
 - $\Im \widetilde{\sigma}$ is a winning strategy in \mathscr{G} .

▶ If $\mathscr{L}(\mathscr{B}) \neq \emptyset$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.

- **Define:** $\lambda(n_i) = u_i \cdot v_i^{\omega}$
 - \Im λ is a winning strategy in \mathcal{T} .

Transfer λ to a **winning** strategy $\tilde{\sigma}$ in \mathcal{G} :

- A history V^+ in \mathscr{A} uniquely maps to an internal node in \mathscr{T} by $h \mapsto \operatorname{zip}(h)$.
- Define $\widetilde{\sigma}$: $\widetilde{\sigma}(h) = \lambda(\operatorname{zip}(h))$
 - $\Im \widetilde{\sigma}$ is a winning strategy in \mathscr{G} .

Synthesizing a winning coalition strategy is in **EXPSPACE**.

▶ If $\mathscr{L}(\mathscr{B}) \neq \emptyset$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.

- **Define:** $\lambda(n_i) = u_i \cdot v_i^{\omega}$
 - \Im λ is a winning strategy in \mathcal{T} .

Transfer λ to a **winning** strategy $\tilde{\sigma}$ in \mathcal{G} :

- A history V^+ in \mathscr{A} uniquely maps to an internal node in \mathscr{T} by $h \mapsto \operatorname{zip}(h)$.
- Define $\widetilde{\sigma}$: $\widetilde{\sigma}(h) = \lambda(\operatorname{zip}(h))$
 - $\Im \widetilde{\sigma}$ is a winning strategy in \mathscr{G} .

Synthesizing a winning coalition strategy is in **EXPSPACE**.

 $\tilde{\sigma}$ uses memory of size $2^{O(|V|)}$, which is unavoidable.

Parameterized concurrent arena.

- Coalition problem with safety objective.
- Safe coalition problem is decidable in exponential space.
 - Reduce to coalition problem on finite tree unfolding.
 - Source Construct doubly-exponential size safety automaton.
 - Solution Check non-emptiness.
- Safe coalition problem is PSPACE-hard.
- Synthesizing a winning strategy (if exists) needs exponential space.
- A winning strategy (if exists) needs exponential size memory.

Reachability condition:

Reachability condition:

Flayers collectively want to reach v_1 .

- Solution Number of players unknown.
- Sollective winning strategy:
 - Player *i* plays *b* at *i*-th round, *a* otherwise.

Reachability condition:

Flayers collectively want to reach v_1 .

- Solution Number of players unknown.
- Sollective winning strategy:
 - Player *i* plays *b* at *i*-th round, *a* otherwise.

Thank You