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Part - II 

Parameterized Concurrent Games
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 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 Player 1 needs to win against all strategies of player 2.

 The game proceeds as follows:
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2-player Concurrent games on graphs
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bb
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, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 Player 1 needs to win against all strategies of player 2.

 Examples of winning objectives: Reachability, Safety…

 The game proceeds as follows:
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Example
[Alfaro, Henzinger, Kupferman ’07]

 Player 1 wants to reach home safely when Player 2 wants to throw a snowball at him.

 No player has a winning strategy.

Hide-or-run example

⟨hide, wait⟩

⟨run, throw⟩ ⟨hide, throw⟩

⟨run, wait⟩

*

v0 v1
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L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Number of players is unknown.
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Decision problems

A distinguished player trying 
to achieve a goal against 
arbitrary number of opponents.

L1 L3

L5

L2 L4

L 6

(Example: Server-clients) (Example: Fleet of drones)
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Decision problems

A distinguished player trying 
to achieve a goal against 
arbitrary number of opponents.

Arbitrary number of players 
trying to achieve a common 
goal as a coalition.

L1 L3

L5

L2 L4

L 6

L1 L3

L5

L2 L4

L 6

(Example: Server-clients) (Example: Fleet of drones)
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Safe coalition problem

 Strategy of player i is                    σi : V+ → Σ .

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}
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Safe coalition problem

 Strategy of player i is                    σi : V+ → Σ .

Input: Arena        initial vertex              and set of safe vertices S. 

Output: Yes iff        

𝒜,

∃ σ̃ . ∀k . Outk(v0, σ̃ ) ⊆ Sω .

v0 ∈ V

                    = set of plays induced by     from     with k players.Outk(v0, σ̃ ) σ̃ v0

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

 A coalition strategy is                          Equivalently, σ̃ : V+ → Σω .σ̃ = ⟨σ1, σ2, …⟩ .

 The coalition wins if they can keep the play 
within a safe set of vertices.
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Example

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Σ = {a, b} . 
 Unspecified transitions lead to a 
losing vertex ⊥ .
 Coalition needs to stay within the 
safe vertices. 
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σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} . 
 Unspecified transitions lead to a 
losing vertex ⊥ .
 Coalition needs to stay within the 
safe vertices. 
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Example

 A coalition winning strategy:

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} . 

 At       coalition plays            since any other choice leads to     
for some k. 
 At      if the history is             the coalition infer there is only 1 
player, hence they choose        
 At      if the history is         coalition infer there is at least 2 
players, hence they choose 

v1,

aω .

bω .

v0, abaω, ⊥

v0v2v1,

v0v1,

 Unspecified transitions lead to a 
losing vertex ⊥ .

v1,

 Coalition needs to stay within the 
safe vertices. 
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Resolution of safe coalition problem

 Unfold arena      to a finite tree.
 Label nodes with corresponding vertices, and edges with languages.

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝒜
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Resolution of safe coalition problem

 Unfold arena      to a finite tree.

 Terminate a branch if:
 Label nodes with corresponding vertices, and edges with languages.

 either some label repeats in the same branch,

 or the label is not in S.
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Resolution of safe coalition problem

 Unfold arena      to a finite tree.

 Terminate a branch if:
 Label nodes with corresponding vertices, and edges with languages.

 either some label repeats in the same branch,

 or the label is not in S.
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 If it ensures safety in the first occurrence, then also for the later.

𝒜

 Intuitively, if a vertex repeats in       coalition may take the same strategy.𝒜,
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Resolution of safe coalition problem
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Resolution of safe coalition problem
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 Proof idea:  any history       in      uniquely maps to an internal node in V+ 𝒜 𝒯 .

Safe coalition problem reduces to existence of a winning 
coalition strategy in the finite tree unfolding.

 The coalition wins if they can reach a safe leaf.
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Decidability of safe coalition problem

EXPSPACE algorithm
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 m = number of internal nodes in 𝒯; m = O(2|V|) .

 r = number of edges in 𝒯; r = O(2|V|) .
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 m = number of internal nodes in 𝒯; m = O(2|V|) .
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Decidability of safe coalition problem

EXPSPACE algorithm
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 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton      over alphabet       :Σmℬ

 |ℬ | = O(22|V|) .

Coalition has a winning strategy in 𝒯 ℒ(ℬ) ≠ ∅
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and PSPACE-hard.
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ba* a*ba*
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+

b ∨ aa
+
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Conclusion

 Parameterized concurrent arena.

 Coalition problem with safety objective.

 Reduce to coalition problem on finite tree unfolding.
 Construct doubly-exponential size safety automaton.

 Safe coalition problem is decidable in exponential space.

 Safe coalition problem is PSPACE-hard.

 Synthesizing a winning strategy (if exists) needs exponential space.

 A winning strategy (if exists) needs exponential size memory.

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

 Check non-emptiness.
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