Verification and Synthesis of Parameterized Concurrent Systems

Anirban Majumdar

Supervised by: Patricia Bouyer, Nathalie Bertrand

September 30, 2021

Part - II

Parameterized Concurrent Games

Finite set of actions: $\Sigma=\{a, b\}$.

* The game proceeds as follows:

Binite set of actions: $\Sigma=\{a, b\}$.

* The game proceeds as follows:

Game starts at initial vertex.

Binite set of actions: $\Sigma=\{a, b\}$.
\$ The game proceeds as follows:
\& Game starts at initial vertex.
\& Players choose actions simultaneously.
© Next vertex is determined by the chosen actions.

Binite set of actions: $\Sigma=\{a, b\}$.
\$ The game proceeds as follows:
\& Game starts at initial vertex.
\& Players choose actions simultaneously.
© Next vertex is determined by the chosen actions.

Binite set of actions: $\Sigma=\{a, b\}$.

* The game proceeds as follows:
\& Game starts at initial vertex.
\& Players choose actions simultaneously.
© Next vertex is determined by the chosen actions.

2-player Concurrent games on graphs

B Finite set of actions: $\Sigma=\{a, b\}$.
The game proceeds as follows:
\& Game starts at initial vertex.
\& Players choose actions simultaneously.
\& Next vertex is determined by the chosen actions.

Player 1 needs to win against all strategies of player 2.

2-player Concurrent games on graphs

Finite set of actions: $\Sigma=\{a, b\}$.
The game proceeds as follows:
\& Game starts at initial vertex.
\& Players choose actions simultaneously.
Next vertex is determined by the chosen actions.

$$
\text { Player } 1 \text { needs to win against all strategies of player } 2 .
$$

Examples of winning objectives: Reachability, Safety...

Example

[Alfaro, Henzinger, Kupferman '07]
Hide-or-run example

Player 1 wants to reach home safely when Player 2 wants to throw a snowball at him.

* No player has a winning strategy.

Parameterized concurrent game arena

* Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
Number of players is unknown.
\$ The game proceeds as follows:

Parameterized concurrent game arena

* Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
(Number of players is unknown.
\$ The game proceeds as follows:
\& Game starts at initial vertex.

Parameterized concurrent game arena

* Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
(Number of players is unknown.
* The game proceeds as follows:

Game starts at initial vertex.
© Adversary fixes k - the number of players (unknown to players).

Parameterized concurrent game arena

* Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
Number of players is unknown.
* The game proceeds as follows:

Game starts at initial vertex.

- Adversary fixes k - the number of players (unknown to players).
\& Players choose actions simultaneously: they form a word $w=a_{1} a_{2} \ldots a_{k}$.

Parameterized concurrent game arena

(Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
(Number of players is unknown.
\$ The game proceeds as follows:
Game starts at initial vertex.
© Adversary fixes k - the number of players (unknown to players).
\& Players choose actions simultaneously: they form a word $w=a_{1} a_{2} \ldots a_{k}$.
\& Next vertex is such that $w \in L_{i}$ (non-determinism is resolved by adversary).

Parameterized concurrent game arena

* Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
Number of players is unknown.
\$ The game proceeds as follows:
Game starts at initial vertex.
© Adversary fixes k - the number of players (unknown to players).
\& Players choose actions simultaneously: they form a word $w=a_{1} a_{2} \ldots a_{k}$.
\& Next vertex is such that $w \in L_{i}$ (non-determinism is resolved by adversary).

Parameterized concurrent game arena

(Finite set of actions: Σ.
$L_{i} \subseteq \Sigma^{*}$.
(Number of players is unknown.
\$ The game proceeds as follows:
Game starts at initial vertex.

- Adversary fixes k - the number of players (unknown to players).
\& Players choose actions simultaneously: they form a word $w=a_{1} a_{2} \ldots a_{k}$.
Next vertex is such that $w \in L_{i}$ (non-determinism is resolved by adversary).

Decision problems

A distinguished player trying to achieve a goal against arbitrary number of opponents.
(Example: Server-clients)
(Example: Fleet of drones)

Decision problems

A distinguished player trying to achieve a goal against arbitrary number of opponents.
(Example: Server-clients)

Arbitrary number of players trying to achieve a common goal as a coalition.
(Example: Fleet of drones)

Safe coalition problem

Strategy of player i is $\sigma_{i}: V^{+} \rightarrow \Sigma$.

Safe coalition problem

\Rightarrow Strategy of player i is $\sigma_{i}: V^{+} \rightarrow \Sigma$.
A coalition strategy is $\widetilde{\sigma}=\left\langle\sigma_{1}, \sigma_{2}, \ldots\right\rangle$. Equivalently, $\widetilde{\sigma}: V^{+} \rightarrow \Sigma^{\omega}$.

Safe coalition problem

\Rightarrow Strategy of player i is $\sigma_{i}: V^{+} \rightarrow \Sigma$.
A coalition strategy is $\tilde{\sigma}=\left\langle\sigma_{1}, \sigma_{2}, \ldots\right\rangle$. Equivalently, $\widetilde{\sigma}: V^{+} \rightarrow \Sigma^{\omega}$.
$\operatorname{Out}^{k}\left(v_{0}, \tilde{\sigma}\right)=$ set of plays induced by $\widetilde{\sigma}$ from v_{0} with k players.

Safe coalition problem

\Rightarrow Strategy of player i is $\sigma_{i}: V^{+} \rightarrow \Sigma$.
A coalition strategy is $\tilde{\sigma}=\left\langle\sigma_{1}, \sigma_{2}, \ldots\right\rangle$. Equivalently, $\widetilde{\sigma}: V^{+} \rightarrow \Sigma^{\omega}$.
$\operatorname{Out}^{k}\left(v_{0}, \tilde{\sigma}\right)=$ set of plays induced by $\widetilde{\sigma}$ from v_{0} with k players.

The coalition wins if they can keep the play within a safe set of vertices.

Safe coalition problem

Strategy of player i is $\sigma_{i}: V^{+} \rightarrow \Sigma$.
A coalition strategy is $\tilde{\sigma}=\left\langle\sigma_{1}, \sigma_{2}, \ldots\right\rangle$. Equivalently, $\widetilde{\sigma}: V^{+} \rightarrow \Sigma^{\omega}$.
$\operatorname{Out}^{k}\left(v_{0}, \tilde{\sigma}\right)=$ set of plays induced by $\widetilde{\sigma}$ from v_{0} with k players.

The coalition wins if they can keep the play within a safe set of vertices.

Input: Arena \mathscr{A}, initial vertex $v_{0} \in V$ and set of safe vertices S.
Output: Yes iff $\exists \tilde{\sigma} . \forall k . O u t^{k}\left(v_{0}, \tilde{\sigma}\right) \subseteq S^{\omega}$.

Example

$\Sigma \Sigma=\{a, b\}$.

- Unspecified transitions lead to a losing vertex \perp.
\& Coalition needs to stay within the safe vertices.

Example

$\Phi \Sigma=\{a, b\}$.
Unspecified transitions lead to a losing vertex \perp.
\& Coalition needs to stay within the safe vertices.

- A coalition winning strategy:

$$
\begin{aligned}
& \widetilde{\sigma}\left(v_{0}\right)=a b a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2}\right)=a^{\omega} ; \\
& \widetilde{\sigma}\left(v_{0} v_{1}\right)=a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2} v_{1}\right)=b^{\omega} .
\end{aligned}
$$

Example

$\Sigma \Sigma=\{a, b\}$.
\% Unspecified transitions lead to a losing vertex \perp.
\& Coalition needs to stay within the safe vertices.

- A coalition winning strategy:

$$
\begin{aligned}
& \widetilde{\sigma}\left(v_{0}\right)=a b a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2}\right)=a^{\omega} ; \\
& \widetilde{\sigma}\left(v_{0} v_{1}\right)=a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2} v_{1}\right)=b^{\omega} .
\end{aligned}
$$

It At v_{0}, coalition plays $a b a^{\omega}$, since any other choice leads to \perp for some k.

Example

$\Sigma \Sigma=\{a, b\}$.
\& Unspecified transitions lead to a losing vertex \perp.
\& Coalition needs to stay within the safe vertices.

- A coalition winning strategy:

$$
\begin{aligned}
& \widetilde{\sigma}\left(v_{0}\right)=a b a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2}\right)=a^{\omega} ; \\
& \widetilde{\sigma}\left(v_{0} v_{1}\right)=a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2} v_{1}\right)=b^{\omega} .
\end{aligned}
$$

(At v_{0}, coalition plays $a b a^{\omega}$, since any other choice leads to \perp for some k.
\&t v_{1}, if the history is $v_{0} v_{2} v_{1}$, the coalition infer there is only 1 player, hence they choose b^{ω}.

Example

$\neq \Sigma=\{a, b\}$.
\& Unspecified transitions lead to a losing vertex \perp.
\& Coalition needs to stay within the safe vertices.

- A coalition winning strategy:

$$
\begin{aligned}
& \widetilde{\sigma}\left(v_{0}\right)=a b a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2}\right)=a^{\omega} ; \\
& \widetilde{\sigma}\left(v_{0} v_{1}\right)=a^{\omega} ; \widetilde{\sigma}\left(v_{0} v_{2} v_{1}\right)=b^{\omega} .
\end{aligned}
$$

(At v_{0}, coalition plays $a b a^{\omega}$, since any other choice leads to \perp for some k.
\& At v_{1}, if the history is $v_{0} v_{2} v_{1}$, the coalition infer there is only 1 player, hence they choose b^{ω}.
At v_{1}, if the history is $v_{0} v_{1}$, coalition infer there is at least 2 players, hence they choose a^{ω}.

Resolution of safe coalition problem

B Unfold arena \mathscr{A} to a finite tree.
Label nodes with corresponding vertices, and edges with languages.

Resolution of safe coalition problem

* Unfold arena \mathscr{A} to a finite tree.

Label nodes with corresponding vertices, and edges with languages.
Terminate a branch if:
\& either some label repeats in the same branch,
\& or the label is not in S.

Resolution of safe coalition problem

* Unfold arena \mathscr{A} to a finite tree.

Label nodes with corresponding vertices, and edges with languages.

* Terminate a branch if:
\& either some label repeats in the same branch,
\& or the label is not in S.
\Rightarrow Intuitively, if a vertex repeats in \mathscr{A}, coalition may take the same strategy.
If it ensures safety in the first occurrence, then also for the later.

Resolution of safe coalition problem

Correctness of Tree Unfolding

A coalition Strategy in the tree is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.

Resolution of safe coalition problem

Correctness of Tree Unfolding

- A coalition Strategy in the tree is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.

The coalition wins if they can reach a safe leaf.

Resolution of safe coalition problem

Correctness of Tree Unfolding

* A coalition Strategy in the tree is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.

The coalition wins if they can reach a safe leaf.

Coalition has a winning strategy in \mathscr{A} Coalition has a winning strategy in \mathscr{T}
© Proof idea: any history V^{+}in \mathscr{A} uniquely maps to an internal node in \mathscr{T}.

Resolution of safe coalition problem

Correctness of Tree Unfolding

A coalition Strategy in the tree is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.

The coalition wins if they can reach a safe leaf.

Coalition has a winning strategy in \mathscr{A} Coalition has a winning strategy in \mathscr{T}
\& Proof idea: any history V^{+}in \mathscr{A} uniquely maps to an internal node in \mathscr{T}.

Safe coalition problem reduces to existence of a winning coalition strategy in the finite tree unfolding.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
© Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
© Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
a (global) state is an r tuple of (local) states.
a (global) state corresponds to different branches.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
\& Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
a (global) state is an r tuple of (local) states.
a (global) state corresponds to different branches.
\& accepting if the corresponding branches reach safe leaves.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
© Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
\% a (global) state is an r tuple of (local) states.
\& a (global) state corresponds to different branches.
\% accepting if the corresponding branches reach safe leaves.
- Accepts words corresponding to winning strategies.

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
\& a (global) state is an r tuple of (local) states.
a (global) state corresponds to different branches.
\% accepting if the corresponding branches reach safe leaves.
Accepts words corresponding to winning strategies.
\square

Decidability of safe coalition problem

EXPSPACE algorithm

*) $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.

- Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
\% a (global) state is an r tuple of (local) states.
\& a (global) state corresponds to different branches.
\% accepting if the corresponding branches reach safe leaves.
Accepts words corresponding to winning strategies.
\square

$$
\mathscr{L}(\mathscr{B}) \neq \varnothing
$$

$\mathscr{\otimes}|\mathscr{B}|=O\left(2^{2^{|V|}}\right)$.

Decidability of safe coalition problem

EXPSPACE algorithm

B $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.
Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
a (global) state is an r tuple of (local) states.
a (global) state corresponds to different branches.
\% accepting if the corresponding branches reach safe leaves.
B Accepts words corresponding to winning strategies.

$$
\mathscr{\mathscr { B }} \mid=O\left(2^{2^{|V|}}\right) .
$$

Safe coalition problem is in EXPSPACE

Decidability of safe coalition problem

EXPSPACE algorithm

B $m=$ number of internal nodes in $\mathscr{T} ; m=O\left(2^{|V|}\right)$.

* $r=$ number of edges in $\mathscr{T} ; r=O\left(2^{|V|}\right)$.

B A coalition Strategy in \mathscr{T} is a mapping $\tau: N_{\text {int }} \rightarrow \Sigma^{\omega}$.
Equivalently, $\tau \in\left(\Sigma^{\omega}\right)^{m}$.
Equivalently, $\tau \in\left(\Sigma^{m}\right)^{\omega}$.
Construct safety automaton \mathscr{B} over alphabet Σ^{m} :
\& runs automata on the edges in parallel.
a (global) state is an r tuple of (local) states.
a (global) state corresponds to different branches.
\& accepting if the corresponding branches reach safe leaves.
B Accepts words corresponding to winning strategies.
Coalition has a winning strategy in \mathscr{T}

$$
\mathscr{L}(\mathscr{B}) \neq \varnothing
$$

$$
\mathscr{\mathscr { B }} \mid=O\left(2^{2^{|V|}}\right)
$$

Safe coalition problem is in EXPSPACE and PSPACE-hard.

Example

Example

Example

Example

Example

Example

Example

Example

Synthesizing a winning strategy

BIf $\mathscr{L}(\mathscr{B}) \neq \varnothing$, an accepting word of \mathscr{B} is $u . v^{\omega}$.
Define: $\lambda\left(\mathrm{n}_{i}\right)=\mathrm{u}_{i} \cdot \mathrm{v}_{i}^{\omega}$
\& λ is a winning strategy in \mathscr{T}.

Synthesizing a winning strategy

If $\mathscr{L}(\mathscr{B}) \neq \varnothing$, an accepting word of \mathscr{B} is $u \cdot v^{\omega}$.
Define: $\lambda\left(\mathrm{n}_{i}\right)=\mathrm{u}_{i} \cdot \mathrm{v}_{i}^{\omega}$
I λ is a winning strategy in \mathscr{T}.

Transfer λ to a winning strategy $\tilde{\sigma}$ in \mathscr{G} :

Synthesizing a winning strategy

If $\mathscr{L}(\mathscr{B}) \neq \varnothing$, an accepting word of \mathscr{B} is $u . v^{\omega}$.
Define: $\lambda\left(\mathrm{n}_{i}\right)=\mathrm{u}_{i} \cdot \mathrm{v}_{i}^{\omega}$
I λ is a winning strategy in \mathscr{T}.

Transfer λ to a winning strategy $\widetilde{\sigma}$ in \mathscr{G} :

B A history V^{+}in \mathscr{A} uniquely maps to an internal node in \mathscr{T} by $h \mapsto \operatorname{zip}(h)$.

D Define $\widetilde{\sigma}: \widetilde{\sigma}(h)=\lambda(\operatorname{zip}(h))$
\& $\tilde{\sigma}$ is a winning strategy in \mathscr{G}.

Synthesizing a winning strategy

If $\mathscr{L}(\mathscr{B}) \neq \varnothing$, an accepting word of \mathscr{B} is $u . \mathrm{v}^{\omega}$.
Define: $\lambda\left(\mathrm{n}_{i}\right)=\mathrm{u}_{i} \cdot \mathrm{v}_{i}^{\omega}$
© λ is a winning strategy in \mathscr{T}.

Transfer λ to a winning strategy $\tilde{\sigma}$ in \mathscr{G} :

\& $\tilde{\sigma}$ is a winning strategy in \mathscr{G}.
Synthesizing a winning coalition strategy is in EXPSPACE.

Synthesizing a winning strategy

If $\mathscr{L}(\mathscr{B}) \neq \varnothing$, an accepting word of \mathscr{B} is $u . v^{\omega}$.
Define: $\lambda\left(\mathrm{n}_{i}\right)=\mathrm{u}_{i} \cdot \mathrm{v}_{i}^{\omega}$
I λ is a winning strategy in \mathscr{T}.

Transfer λ to a winning strategy $\tilde{\sigma}$ in \mathscr{G} :

8 A history V^{+}in \mathscr{A} uniquely maps to an internal node in \mathscr{T} by $h \mapsto \operatorname{zip}(h)$.
\Rightarrow Define $\tilde{\sigma}: \widetilde{\sigma}(h)=\lambda(\operatorname{zip}(h))$
${ }_{q} \tilde{\sigma}$ is a winning strategy in \mathscr{G}.

Synthesizing a winning coalition strategy is in EXPSPACE.

$\widetilde{\sigma}$ uses memory of size $2^{O(|V|)}$, which is unavoidable.

Conclusion

- Parameterized concurrent arena.
- Coalition problem with safety objective.

B Safe coalition problem is decidable in exponential space.

- Reduce to coalition problem on finite tree unfolding.
\& Construct doubly-exponential size safety automaton.
© Check non-emptiness.
Safe coalition problem is PSPACE-hard.
- Synthesizing a winning strategy (if exists) needs exponential space.
* A winning strategy (if exists) needs exponential size memory.

Future work

Tight complexity bound.

Future work

* Tight complexity bound.

Beachability condition:

Bight complexity bound.
Reachability condition:

Players collectively want to reach v_{1}.
\& Number of players unknown.
\& Collective winning strategy:
Player i plays b at i-th round, a otherwise.

* Tight complexity bound.

Beachability condition:

\& Players collectively want to reach v_{1}.
\& Number of players unknown.
© Collective winning strategy:

* Player i plays b at i-th round, a otherwise.

> Thank You

