
1

Verification and Synthesis of
Parameterized Concurrent Systems

Supervised by: Patricia Bouyer, Nathalie Bertrand

Anirban Majumdar

September 30, 2021

2

Part - II

Parameterized Concurrent Games

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .
 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Game starts at initial vertex.

 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 Player 1 needs to win against all strategies of player 2.

 The game proceeds as follows:

v3

v2

v1v0

3

2-player Concurrent games on graphs

ab ba

bb

aa aa, bb

ab
, b

a

 Finite set of actions: Σ = {a, b} .

 Players choose actions simultaneously.

 Next vertex is determined by the chosen actions.

 Game starts at initial vertex.

 Player 1 needs to win against all strategies of player 2.

 Examples of winning objectives: Reachability, Safety…

 The game proceeds as follows:

v3

4

Example
[Alfaro, Henzinger, Kupferman ’07]

 Player 1 wants to reach home safely when Player 2 wants to throw a snowball at him.

 No player has a winning strategy.

Hide-or-run example

⟨hide, wait⟩

⟨run, throw⟩ ⟨hide, throw⟩

⟨run, wait⟩

*

v0 v1

v2

v3

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Number of players is unknown.

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.

 Number of players is unknown.

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.
 Adversary fixes k - the number of players (unknown to players).

 Number of players is unknown.

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.
 Adversary fixes k - the number of players (unknown to players).

 Number of players is unknown.

 Players choose actions simultaneously:
they form a word w = a1 a2 … ak .

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.
 Adversary fixes k - the number of players (unknown to players).

 Number of players is unknown.

 Players choose actions simultaneously:
they form a word w = a1 a2 … ak .
 Next vertex is such that (non-determinism is
resolved by adversary).

w ∈ Li

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.
 Adversary fixes k - the number of players (unknown to players).

 Number of players is unknown.

 Players choose actions simultaneously:
they form a word w = a1 a2 … ak .
 Next vertex is such that (non-determinism is
resolved by adversary).

w ∈ Li

v0 v1

v2

v3

5

Parameterized concurrent game arena

L1 L3

L5

L2 L4

L 6

 Finite set of actions: Σ .
 Li ⊆ Σ* .

 The game proceeds as follows:
 Game starts at initial vertex.
 Adversary fixes k - the number of players (unknown to players).

 Number of players is unknown.

 Players choose actions simultaneously:
they form a word w = a1 a2 … ak .
 Next vertex is such that (non-determinism is
resolved by adversary).

w ∈ Li

6

Decision problems

A distinguished player trying
to achieve a goal against
arbitrary number of opponents.

L1 L3

L5

L2 L4

L 6

(Example: Server-clients) (Example: Fleet of drones)

6

Decision problems

A distinguished player trying
to achieve a goal against
arbitrary number of opponents.

Arbitrary number of players
trying to achieve a common
goal as a coalition.

L1 L3

L5

L2 L4

L 6

L1 L3

L5

L2 L4

L 6

(Example: Server-clients) (Example: Fleet of drones)

7

Safe coalition problem

 Strategy of player i is σi : V+ → Σ .

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

7

Safe coalition problem

 Strategy of player i is σi : V+ → Σ .

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

 A coalition strategy is Equivalently, σ̃ : V+ → Σω .σ̃ = ⟨σ1, σ2, …⟩ .

7

Safe coalition problem

 Strategy of player i is σi : V+ → Σ .

 = set of plays induced by from with k players.Outk(v0, σ̃) σ̃ v0

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

 A coalition strategy is Equivalently, σ̃ : V+ → Σω .σ̃ = ⟨σ1, σ2, …⟩ .

7

Safe coalition problem

 Strategy of player i is σi : V+ → Σ .

 = set of plays induced by from with k players.Outk(v0, σ̃) σ̃ v0

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

 A coalition strategy is Equivalently, σ̃ : V+ → Σω .σ̃ = ⟨σ1, σ2, …⟩ .

 The coalition wins if they can keep the play
within a safe set of vertices.

7

Safe coalition problem

 Strategy of player i is σi : V+ → Σ .

Input: Arena initial vertex and set of safe vertices S.

Output: Yes iff

𝒜,

∃ σ̃ . ∀k . Outk(v0, σ̃) ⊆ Sω .

v0 ∈ V

 = set of plays induced by from with k players.Outk(v0, σ̃) σ̃ v0

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

⊥⊥ Σ*∖{b ∨ aa+}Σ*∖{a*ba* ∨ a}

 A coalition strategy is Equivalently, σ̃ : V+ → Σω .σ̃ = ⟨σ1, σ2, …⟩ .

 The coalition wins if they can keep the play
within a safe set of vertices.

8

Example

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Σ = {a, b} .
 Unspecified transitions lead to a
losing vertex ⊥ .
 Coalition needs to stay within the
safe vertices.

8

Example

 A coalition winning strategy:

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} .
 Unspecified transitions lead to a
losing vertex ⊥ .
 Coalition needs to stay within the
safe vertices.

8

Example

 A coalition winning strategy:

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} .

 At coalition plays since any other choice leads to
for some k.

v0, abaω, ⊥

 Unspecified transitions lead to a
losing vertex ⊥ .
 Coalition needs to stay within the
safe vertices.

8

Example

 A coalition winning strategy:

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} .

 At coalition plays since any other choice leads to
for some k.
 At if the history is the coalition infer there is only 1
player, hence they choose

v1,
bω .

v0, abaω, ⊥

v0v2v1,

 Unspecified transitions lead to a
losing vertex ⊥ .
 Coalition needs to stay within the
safe vertices.

8

Example

 A coalition winning strategy:

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

σ̃(v0) = abaω;
σ̃(v0v1) = aω; σ̃(v0v2v1) = bω .

σ̃(v0v2) = aω;

Σ = {a, b} .

 At coalition plays since any other choice leads to
for some k.
 At if the history is the coalition infer there is only 1
player, hence they choose
 At if the history is coalition infer there is at least 2
players, hence they choose

v1,

aω .

bω .

v0, abaω, ⊥

v0v2v1,

v0v1,

 Unspecified transitions lead to a
losing vertex ⊥ .

v1,

 Coalition needs to stay within the
safe vertices.

9

Resolution of safe coalition problem

 Unfold arena to a finite tree.
 Label nodes with corresponding vertices, and edges with languages.

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝒜

9

Resolution of safe coalition problem

 Unfold arena to a finite tree.

 Terminate a branch if:
 Label nodes with corresponding vertices, and edges with languages.

 either some label repeats in the same branch,

 or the label is not in S.

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝒜

9

Resolution of safe coalition problem

 Unfold arena to a finite tree.

 Terminate a branch if:
 Label nodes with corresponding vertices, and edges with languages.

 either some label repeats in the same branch,

 or the label is not in S.

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

 If it ensures safety in the first occurrence, then also for the later.

𝒜

 Intuitively, if a vertex repeats in coalition may take the same strategy.𝒜,

10

Resolution of safe coalition problem

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Correctness of Tree Unfolding

 A coalition Strategy in the tree is a mapping τ : Nint → Σω .

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

10

Resolution of safe coalition problem

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Correctness of Tree Unfolding

 A coalition Strategy in the tree is a mapping τ : Nint → Σω .

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 The coalition wins if they can reach a safe leaf.

10

Resolution of safe coalition problem

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Correctness of Tree Unfolding

 A coalition Strategy in the tree is a mapping τ : Nint → Σω .

Coalition has a winning strategy in 𝒜 Coalition has a winning strategy in 𝒯

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Proof idea: any history in uniquely maps to an internal node in V+ 𝒜 𝒯 .

 The coalition wins if they can reach a safe leaf.

10

Resolution of safe coalition problem

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

Correctness of Tree Unfolding

 A coalition Strategy in the tree is a mapping τ : Nint → Σω .

Coalition has a winning strategy in 𝒜 Coalition has a winning strategy in 𝒯

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Proof idea: any history in uniquely maps to an internal node in V+ 𝒜 𝒯 .

Safe coalition problem reduces to existence of a winning
coalition strategy in the finite tree unfolding.

 The coalition wins if they can reach a safe leaf.

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .𝒯

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

𝒯

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

Coalition has a winning strategy in 𝒯 ℒ(ℬ) ≠ ∅

 r = number of edges in 𝒯; r = O(2|V|) .

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 |ℬ | = O(22|V|) .

Coalition has a winning strategy in 𝒯 ℒ(ℬ) ≠ ∅

 r = number of edges in 𝒯; r = O(2|V|) .

Safe coalition problem is in EXPSPACE

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 |ℬ | = O(22|V|) .

Coalition has a winning strategy in 𝒯 ℒ(ℬ) ≠ ∅

 r = number of edges in 𝒯; r = O(2|V|) .

Safe coalition problem is in EXPSPACE

11

Decidability of safe coalition problem

EXPSPACE algorithm

v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba

* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 A coalition Strategy in is a mapping τ : Nint → Σω .
 Equivalently, τ ∈ (Σω)m .

 Equivalently, τ ∈ (Σm)ω .

𝒯

 Accepts words corresponding to winning strategies.

 a (global) state is an r tuple of (local) states.
 a (global) state corresponds to different branches.
 accepting if the corresponding branches reach safe leaves.

 runs automata on the edges in parallel.

 m = number of internal nodes in 𝒯; m = O(2|V|) .

 Construct safety automaton over alphabet :Σmℬ

 |ℬ | = O(22|V|) .

Coalition has a winning strategy in 𝒯 ℒ(ℬ) ≠ ∅

 r = number of edges in 𝒯; r = O(2|V|) .

and PSPACE-hard.

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0

s1

q1

p0

r1

s3

a
a
Σ
b

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0

s1

q1

p0

r1

s3

p1

s3

×
p1

r1

s3

b
b
Σ
b

a
a
Σ
b

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0

s1

q1

p0

r1

s3

p1

s2

×
p1

r1

×

p1

s3

×
p1

r1

s3

b
b
Σ
b

b
a
Σ
Σ

a
a
Σ
b

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0

s1

q1

p0

r1

s3

p1

s2

×
p1

r1

×

p1

s3

×
p1

r1

s3

p1

s1

×
p1

r1

s3

p1

×
×
p1

r1

×

a
Σ
Σ
Σ

b
b
Σ
b

b
a
Σ
b

b
a
Σ
Σ

a
a
Σ
b

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

12

Example
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

p0

s0

q0

p0

r0

s0

p0

s1

q1

p0

r1

s3

p1

s2

×
p1

r1

×

p1

s3

×
p1

r1

s3

p1

s1

×
p1

r1

s3

p1

×
×
p1

r1

×

…..

…..

a
Σ
Σ
Σ

b
b
Σ
b

b
a
Σ
b

b
a
Σ
Σ

a
a
Σ
b

a
a
Σ
Σ

p0 p1

a

b

a

a*ba* :

q0 q1
aa :

r0 r1
Σ

Σ

Σ+ :

s0

s1

s2

s3 a

aa

b
b ∨ aa+ :

13

Synthesizing a winning strategy
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Define: λ(𝗇i) = 𝗎i . 𝗏ω
i

 is a winning strategy in λ 𝒯 .

 If an accepting word of isℬ 𝗎 . 𝗏ω .ℒ(ℬ) ≠ ∅,

13

Synthesizing a winning strategy
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Define: λ(𝗇i) = 𝗎i . 𝗏ω
i

 is a winning strategy in λ 𝒯 .

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

𝒢 : Transfer to a winning strategy inλ σ̃

 If an accepting word of isℬ 𝗎 . 𝗏ω .ℒ(ℬ) ≠ ∅,

13

Synthesizing a winning strategy
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Define: λ(𝗇i) = 𝗎i . 𝗏ω
i

 is a winning strategy in λ 𝒯 .

 A history in uniquely maps to
an internal node in by

V+ 𝒜
𝒯 h ↦ 𝗓𝗂𝗉(h) .

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

𝒢 : Transfer to a winning strategy inλ σ̃

σ̃ : Define σ̃(h) = λ(𝗓𝗂𝗉(h))

 is a winning strategy in σ̃ 𝒢 .

 If an accepting word of isℬ 𝗎 . 𝗏ω .ℒ(ℬ) ≠ ∅,

13

Synthesizing a winning strategy
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Define: λ(𝗇i) = 𝗎i . 𝗏ω
i

 is a winning strategy in λ 𝒯 .

 A history in uniquely maps to
an internal node in by

V+ 𝒜
𝒯 h ↦ 𝗓𝗂𝗉(h) .

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

𝒢 : Transfer to a winning strategy inλ σ̃

σ̃ : Define σ̃(h) = λ(𝗓𝗂𝗉(h))

 is a winning strategy in σ̃ 𝒢 .

Synthesizing a winning coalition strategy is in EXPSPACE.

 If an accepting word of isℬ 𝗎 . 𝗏ω .ℒ(ℬ) ≠ ∅,

13

Synthesizing a winning strategy
v0

v0 v1 v2 ⊥

v0 ⊥ v1

v0 ⊥

a*
ba* a*ba*

a

b ∨ aa
+

b ∨ aa
+

Σ+

𝗇0

𝗇1

𝗇3

𝗇2

 Define: λ(𝗇i) = 𝗎i . 𝗏ω
i

 is a winning strategy in λ 𝒯 .

 A history in uniquely maps to
an internal node in by

V+ 𝒜
𝒯 h ↦ 𝗓𝗂𝗉(h) .

a*ba*
a*ba*

b ∨ aa+

a

Σ
+

v0 v1

v2

𝒢 : Transfer to a winning strategy inλ σ̃

σ̃ : Define σ̃(h) = λ(𝗓𝗂𝗉(h))

 is a winning strategy in σ̃ 𝒢 .

Synthesizing a winning coalition strategy is in EXPSPACE.

 uses memory of size σ̃ 2O(|V|), which is unavoidable.

 If an accepting word of isℬ 𝗎 . 𝗏ω .ℒ(ℬ) ≠ ∅,

14

Conclusion

 Parameterized concurrent arena.

 Coalition problem with safety objective.

 Reduce to coalition problem on finite tree unfolding.
 Construct doubly-exponential size safety automaton.

 Safe coalition problem is decidable in exponential space.

 Safe coalition problem is PSPACE-hard.

 Synthesizing a winning strategy (if exists) needs exponential space.

 A winning strategy (if exists) needs exponential size memory.

a*ba*
a*ba*

b ∨ aa+

a
Σ

+

v0 v1

v2

 Check non-emptiness.

15

Future work

 Tight complexity bound.

15

Future work

a*ba+

v0 v1⊥
Σ*∖{a*ba+ + a*b} a*b

 Reachability condition:

 Tight complexity bound.

15

Future work

a*ba+

v0 v1⊥
Σ*∖{a*ba+ + a*b} a*b

 Reachability condition:

 Tight complexity bound.

 Collective winning strategy:
 Player i plays b at i-th round, a otherwise.

 Number of players unknown.

 Players collectively want to reach v1 .

15

Future work

a*ba+

v0 v1⊥
Σ*∖{a*ba+ + a*b} a*b

 Reachability condition:

 Tight complexity bound.

 Collective winning strategy:
 Player i plays b at i-th round, a otherwise.

 Number of players unknown.

 Players collectively want to reach v1 .

Thank You

